## **Pandemic-scale Phylogenetics**

Yatish Turakhia Assistant Professor, UC San Diego

## **COVID-19 virus (SARS-CoV-2) is constantly mutating**

- As the COVID-19 virus (SARS-COV-2) spreads, it **mutates**
- Certain mutations render the virus more contagious, virulent or capable of evading the vaccines and antibody-based therapies
- Genome sequencing helps monitor the viral mutations and the evolutionary dynamics



#### Number of Global SARS-CoV-2 Genome Sequences



#### Number of Global SARS-CoV-2 Genome Sequences



~75x higher semi-logarithmic slope compared to Moore's Law



## **Overview of the UShER Package**

- UShER: Phylogenetic placement
  - Turakhia et al., Nature Genetics 2021
- matOptimize: Phylogenetic tree optimization
  - Ye et al., Bioinformatics 2022
- **RIPPLES:** Find recombinant sequences using a phylogenomic approach
  - Turakhia et al., bioRxiv 2021 (under revision, Nature)
- matUtils: Command-line tools for rapidly analyzing and interpreting SARS-CoV-2 mutation-annotated phylogenetic trees
  - *McBroome et al.,* Molecular Biology and Evolution (MBE) 2021

## Acknowledgments



#### **UC San Diego**

- •
- Sumit Walia ٠
- Alireza M. ٠
- Kyle Smith •
- Kevin Liu ٠
- Xuan Wang ۲

- Devika Torvi ۲
- Shoh Mollenkamp ٠
- Arthur Lu •

Robert Lanfear

#### EBI/EMBL

- Nicola DeMaio •
- Nick Goldman ٠

#### UC Santa Cruz

- Bryan Thornlow ٠
- Jakob McBroome ٠
- Alexander Kramer ٠
- Landen Gozashti ٠
- Adriano Schneider ٠
- Cade Mirchandani ٠
- David Haussler ٠

#### Funding

- CDC
- NIH ٠
- Schmidt Foundation ٠
- UCOP Seed Funding for COVID-19 ٠

## **Overview of the UShER Package**

- UShER: Phylogenetic placement
- matOptimize: Phylogenetic tree optimization
- **RIPPLES:** Find recombinant sequences using a phylogenomic approach
- matUtils: Command-line tools for rapidly analyzing and interpreting SARS-CoV-2 mutation-annotated phylogenetic trees

## Phylogenetic analysis using genome sequence data



#### SARS-CoV-2 phylogenetics with <u>new</u> sequences

Approach 1: Re-infer global phylogeny including the new sequences



3. De novo inference of phylogeny (IQ-Tree etc.)



#### **SARS-CoV-2** phylogenetics with <u>new</u> sequences

**Approach 1: Re-infer** global phylogeny including the new sequences

Approach 2: Place new sequences on an existing phylogeny





https://github.com/yatisht/usher

Placing 1K samples on 100K tree



## Parallelizing over multiple CPU instances



Devika Torvi, UCSD Bioinformatics undergrad

#### Scaling analysis for placing 100K samples on a 1M-sample tree

**Strong Scaling** 

Weak Scaling



| UShER |                |         |
|-------|----------------|---------|
| vCPU  | Samples placed | Time    |
| 64    | 6.25K          | 26m 48s |
| 128   | 12.5K          | 28m 22s |
| 256   | 25K            | 30m 41s |
| 512   | 50K            | 33m 36s |
| 1024  | 100K           | 37m 07s |

# Why is UShER so fast?

For SARS-CoV-2 relative to the highly popular software, IQ-TREE, that has amassed >10K citations

## What makes UShER so fast?

- 1. Choice of **algorithm**: maximum parsimony over maximum likelihood
- 2. Efficient **data structure**: mutation-annotated tree (MAT)
- 3. Pre-processing for sequential placement
- 4. Efficiently **parallelizing** the placement step

### 1. Choice of Algorithm: MP over ML (10-100x speedup)

Maximum Likelihood (ML)



Maximum Parsimony (MP)



Internal node u with children v and w:

$$S_{u}(x) = \min_{y}(S_{v}(y) + W_{xy}) + \min_{y}(S_{w}(y) + W_{xy})$$

#### MP and ML trees practically the same for SARS-CoV-2







Bryan Thornlow, UCSC -> ROME Therapeutics

## MP trees are also easier to analyze & interpret!

Maximum Likelihood

**Maximum Parsimony** 





### **2.** Efficient data structure: Mutation-annotated tree (MAT)



"evolutionary compression"

### 3. Pre-processing for sequential placement: ~50x speedup



## 4. Efficiently parallelizing the placement step



# But ... (greedy) sequential placement can lead to <u>suboptimal</u> trees occasionally

And suboptimalities could accumulate!

## **Overview of the UShER Package**

- UShER: Phylogenetic placement
- matOptimize: Phylogenetic tree optimization
- **RIPPLES:** Find recombinant sequences using a phylogenomic approach
- matUtils: Command-line tools for rapidly analyzing and interpreting SARS-CoV-2 mutation-annotated phylogenetic trees

# Tree optimization programs can help ameliorate suboptimal placements

- Use tree re-arrangement (NNI, SPR, TBR etc.)
- Three step process:
  - (Split tree into subtrees/sectors)
  - Identify **profitable** tree rearrangement moves in each sector
  - Apply **non-conflicting** profitable moves in each sector, with a tie-breaking strategy for conflicts
  - (Merge sectors to optimized full tree)
- Some programs maintain several tree copies (applying different moves in each copy)



#### matOptimize (ours) outperforms TNT for SARS-CoV-2



(Cheng Ye, UCSD ECE undergrad)

## Innovative optimizations in matOptimize

#### **Previous** approaches

Ours (matOptimize)



## Innovative optimizations in matOptimize

- More space-efficient and optimization-friendly MAT format
- Separate profitable move search and application phase to achieve **high parallelism** 
  - Supports multi-node parallelism with MPI
- Modified Gladstein's incremental update method to calculate change in parsimony score resulting from a move
- Novel search space pruning



## Multi-node scaling of matOptimize

**Strong Scaling** 

**Weak Scaling** 



| vCPU | Source nodes explored | Time    |
|------|-----------------------|---------|
| 64   | 39789                 | 10m 45s |
| 128  | 79577                 | 11m 54s |
| 256  | 159154                | 11m 51s |
| 512  | 318308                | 11m 58s |
| 1024 | 636616                | 11m 30s |

#### matOptimize: a parallel tree optimization method enables online phylogenetics for SARS-CoV-2 a

Cheng Ye, Bryan Thornlow, Angie Hinrichs, Alexander Kramer, Cade Mirchandani, Devika Torvi, Robert Lanfear, Russell Corbett-Detig, Yatish Turakhia 🐱

*Bioinformatics*, btac401, https://doi.org/10.1093/bioinformatics/btac401 **Published:** 22 June 2022 Article history ▼



# Online matOptimize produces phylogenies most similar to ground truth on simulated SARS2 data







Bryan Thornlow

# There is another spooky mechanism through which the virus evolves ...

It's called <u>Recombination</u>

## **Overview of the UShER Package**

- UShER: Phylogenetic placement
- matOptimize: Phylogenetic tree optimization

#### • RIPPLES: Find recombinant sequences using a phylogenomic approach

• **matUtils:** Command-line tools for rapidly analyzing and interpreting SARS-CoV-2 mutation-annotated phylogenetic trees

## **Viral Recombination**



## **Recombination may lead to drastic jumps in fitness!**

Sequence evolution by single mutations v/s recombination

**Fitness landscape** 





## **Deltacron & some other recombinants are real!**

# What is the hybrid 'deltacron' variant of the coronavirus?

Scientists have detected a handful of cases of the delta-omicron hybrid but say it's unlikely to cause a new surge.

#### What is deltacron?

Recombinants can emerge when a cell is infected with two different strains of a virus at the same time – in this case, the delta variant and the omicron variant. As the viruses invade the cell and replicate, they can, in rare cases, swap parts of their genome and pick up mutations from each other.

**HEALTHCARE** • CORONAVIRUS

#### An Omicron-Omicron Recombinant—BA.4

William A. Haseltine Contributor 🛈

#### **RIPPLES orders of magnitude faster using phylogenomic insights**





 $\sim$ 50 min for 1M-sample tree

Analyzed on 1K SARS-CoV-2 seqs

## **Innovative optimizations in RIPPLES**

**Previous approaches** 

#### **Ours (RIPPLES)**





## **RIPPLES discovers >600 recombination events!**

- **>600 unique** SARS-CoV-2 recombination events discovered from a 1.6M sample phylogeny!
  - $\sim 2.7\%$  sequences have a **detectable** recombinant ancestry
- This is the **largest recombination study** to our knowledge
- With our latest RIPPLES software (ripplesfast), we can infer recombinants from a ~10M SARS-CoV-2 mutation-annotated tree in ~2 hours!



## Recombination breakpoints are elevated in the SARS-CoV-2 Spike protein region



SARS-CoV-2 Genome Coordinate

## **Overview of the UShER Package**

- UShER: Phylogenetic placement
- matOptimize: Phylogenetic tree optimization
- RIPPLES: Find recombinant sequences using a phylogenomic approach
- matUtils: Command-line tools for rapidly analyzing and interpreting SARS-CoV-2 mutation-annotated phylogenetic trees

| Subcommand  | Arguments                                     | Description                                                                                                                |
|-------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| annotate    | clade-to-nid (1: 19A, 3:<br>19B)              | Assigns clades to nodes                                                                                                    |
| extract     | clade 19B                                     | Extract subtree based on clade, mutation, branch length and other conditions                                               |
| uncertainty | find-epps                                     | Output sample placement uncertainty metrics, for e.g., number of equally parsimonious placements                           |
| introduce   | population-samples (D: USA,<br>E: USA, F:USA) | Identify internal nodes corresponding to introduction of one or more infection clusters in a geographic region of interest |
| summary     | N/A                                           | Output basic statistics of a MAT                                                                                           |



| Subcommand  | Arguments                                     | Description                                                                                                                |
|-------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| annotate    | clade-to-nid (1: 19A, 3:<br>19B)              | Assigns clades to nodes                                                                                                    |
| extract     | clade 19B                                     | Extract subtree based on clade, mutation, branch length and other conditions                                               |
| uncertainty | find-epps                                     | Output sample placement uncertainty metrics, for e.g., number of equally parsimonious placements                           |
| introduce   | population-samples (D: USA,<br>E: USA, F:USA) | Identify internal nodes corresponding to introduction of one or more infection clusters in a geographic region of interest |
| summary     | N/A                                           | Output basic statistics of a MAT                                                                                           |





| Subcommand  | Arguments                                     | Description                                                                                                                |
|-------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| annotate    | clade-to-nid (1: 19A, 3:<br>19B)              | Assigns clades to nodes                                                                                                    |
| extract     | clade 19B                                     | Extract subtree based on clade, mutation, branch length and other conditions                                               |
| uncertainty | find-epps                                     | Output sample placement uncertainty metrics, for e.g., number of equally parsimonious placements                           |
| introduce   | population-samples (D: USA,<br>E: USA, F:USA) | Identify internal nodes corresponding to introduction of one or more infection clusters in a geographic region of interest |
| summary     | N/A                                           | Output basic statistics of a MAT                                                                                           |



| Subcommand  | Arguments                                     | Description                                                                                                                |
|-------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| annotate    | clade-to-nid (1: 19A, 3:<br>19B)              | Assigns clades to nodes                                                                                                    |
| extract     | clade 19B                                     | Extract subtree based on clade, mutation, branch length and other conditions                                               |
| uncertainty | find-epps                                     | Output sample placement uncertainty metrics, for e.g., number of equally parsimonious placements                           |
| introduce   | population-samples (D: USA,<br>E: USA, F:USA) | Identify internal nodes corresponding to introduction of one or more infection clusters in a geographic region of interest |
| summary     | N/A                                           | Output basic statistics of a MAT                                                                                           |





Region largest monophyletic clade: 3, regional association index: 0.05

| sample | intro_node | distance | clades | mutation_path                           |
|--------|------------|----------|--------|-----------------------------------------|
| D      | 3          | 1        | 1      | G10U                                    |
| E      | 3          | 4        | 1      | C6U,U7A <c11a,a12u< td=""></c11a,a12u<> |
| F      | 3          | 3        | 1      | C6U,U7A <a13g< td=""></a13g<>           |

| Subcommand  | Arguments                                     | Description                                                                                                                |
|-------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| annotate    | clade-to-nid (1: 19A, 3:<br>19B)              | Assigns clades to nodes                                                                                                    |
| extract     | clade 19B                                     | Extract subtree based on clade, mutation, branch length and other conditions                                               |
| uncertainty | find-epps                                     | Output sample placement uncertainty metrics, for e.g., number of equally parsimonious placements                           |
| introduce   | population-samples (D: USA,<br>E: USA, F:USA) | Identify internal nodes corresponding to introduction of one or more infection clusters in a geographic region of interest |
| summary     | N/A                                           | Output basic statistics of a MAT                                                                                           |





| Total | Nodes in Tree: 11             |
|-------|-------------------------------|
| Total | Samples in Tree: 6            |
| Total | Condensed Nodes in Tree: 0    |
| Total | Samples in Condensed Nodes: 0 |
| Total | Tree Parsimony: 16            |
|       |                               |

| clade | inclusive_count | exclusive_count |
|-------|-----------------|-----------------|
| 19A   | 6               | 3               |
| 19B   | 3               | 3               |

#### matUtils is fast!

On **~1M-sample** SARS-CoV-2 phylogeny:

- ~5 sec to compute summary statistics
- ~5 sec to extract a subtree of specified samples
- ~15 sec to extract mutation paths from root to every sample in the tree
- ~9 sec to resolve all polytomies
  - Takes ~37 min using ape
- ~1 min to identify introductions



Jacob McBroome, UCSC

## **Real-world impact**

## **UShER added to UCSC Genome Browser**

Signal Pen

ansmern Domain

Disulf, Bonds Protein Domains

Repeats





wuhCor1

11

1

10.10

t Transmembrane Domain

IniProt Disulfide Bond

Angie Hinrichs, UCSC

Rapid cross-referencing with 50+ molecular and structural biology tracks

## YouTube Tutorials on the UCSC SARS-CoV-2 Genome Browser



#### SARS-CoV-2 Genome Browser

5 videos · 65 views · Last updated on Mar 22, 2022

 $\Xi$ + X ...

Browser

A fast-paced introduction to using the SARS-CoV-2 Genome Browser to look at Genome Annotation Tracks and the UShER web interface to make phylogenetic trees of your samples and compare with millions of SARS-CoV-2 sequences



UCSC Genome SUBSCRIBE



1

Introduction to the UCSC SARS-CoV-2 Genome Browser





UCSC Genome Browser



1B - Using UShER custom tracks with the UCSC SARS-CoV-2 Genome Browser

1A - Uploading a sequence file to the UCSC SARS-CoV-2 Genome Browser

UCSC Genome Browser



2A - Exploring additional data tracks in the UCSC SARS-CoV-2 Genome Browser UCSC Genome Browser

n data tracks into th 5

2B - Uploading custom data tracks into the UCSC SARS-CoV-2 Genome Browser

UCSC Genome Browser

## Largest SARS-CoV-2 phylogenies

Covered by UCSC news and Santa Cruz Tech Beat

UCSC's Million-COVID-Genome Tree Could be a First







Yatish Turakhia, UCSC Postdoc scholar, incoming Assistant Professor, UCSD

Russell Corbett-Detig, UCSC Assistant Professor, Biomolecular Engineering

#### Solving a computational puzzle, a UCSC team created a dynamic evolutionary tree to enable real-time genomic contact tracing

SANTA CRUZ, CA – April 13, 2020 – Early in the pandemic, UCSC knew they wanted to help researchers tracking the virus. During the 2013 Ebola outbreak, the seasoned Browser team had used their coding skills to build a virus browser. Since Ebola, a new era of fast, cheap sequencing has created a mountain of genomic data, changing the research landscape. Traditional display code just wouldn't keep pace with this novel coronavirus.

#### Taxonium view of >10M SARS-CoV-2 sample phylogeny



#### UShER default engine in Pangolin SARS-CoV-2 lineage assigner

#### pangolin v3.0

🙆 aineniamh released this on May 27 · 110 commits to master since this release

#### Release notes: Major release

- pangolin 3.0 comes with additional functionality and requires an environment update as extra dependencies now include UShER and scorpio.
- Requires pangoLEARN data >= 2021-05-27

#### Lineage assignment updates

- PANGO assignment uses a sequence hash from all currently designated sequences to assign lineages.
- PLEARN (pangoLEARN) assignment using a machine-learning model to assign the most likely lineage. Current model is decision tree model.
- PUSHER (pangolin-UShER, pangUSHlin, pangUSHER) assignment uses fast parsimony placement of a query sequence into a
  protobuf file based on currently designated sequences and infers most pasimonious lineage based on this placement (thanks to
  @AngieHinrichs and the rest of the UShER team).
- Default --max-ambig value changed to 0.3.



🚱 aineniamh released this Apr 01, 2022 🛛 - 51 commits to master since this release 🛛 🛇 v4.0 🛛 - O- 20eb73e 🥝

#### Release notes

pangolin has had a big code overhaul recently, which should help with maintainability going forward, but there are some main changes the user will be concerned with that I wanted to flag here before the release:

- Notably, the default mode is shifting from pangoLEARN to UShER. If you run large amounts of sequences through pangolin routinely you should be aware this update will impact the speed of pangolin for large amounts of data and you may want to consider parallelisation, using the optional usher assignment cache file (accessed with --add-assignment-cache and --use-assignment-cache flags) or using the --analysis-mode pangoLEARN flag.
- The pangoLEARN model being trained is a random forest rather than a decision tree, so the confidence scores reflect the assignment probability from the random forest model now rather than the number of suitable categories as is the case with the decision tree model.
- Changes to dependencies: We're rationalising the pangoLEARN repository and the file accessed from pango-designation into a single repository called
  pangolin-data, so pangoLEARN and pango-designation are no longer needed as dependencies.
- Changes to versioning: pangolin-data will have the same version number as the pango-designation tag as the lineages version in UShER protobul file and the pangoLEARN model, giving a less convoluted versioning system than has previously been the case.



#### Thanks to:

- Áine O'Toole
- Emily Scher
- Rachel Colquhoun
- Andrew Rambaut

Angie Hinrichs, UCSC

Compare -

#### UShER included in the CDC COVID-19 Genomic Epidemiology Toolkit

#### Part 3: Implementation

#### Module 3.1 Getting started with Nextstrain

Introducing Nextstrain, an interactive tool for visualizing phylogenetic trees



#### Module 3.2 Getting started with MicrobeTrace

Introducing MicrobeTrace, an interactive tool for transmission network analysis



#### Module 3.3

Real-time phylogenetics with UShER

Introducing UShER, a web portal for fast calculation of phylogenetic trees



Delta outbreak analysis at a Calif. elementary school used UShER

## The New York Times

## How the Delta Variant Infiltrated an Elementary School Classroom

A detailed study in California found that the variant easily spread from an unvaccinated teacher to children and, in a few cases,



# UShER has been used for outbreak analysis in several parts of the world (including LMIC)

Repeated transmission of SARS-CoV-2 in an overcrowded Irish emergency department elucidated by whole genome sequencing

Daniel Hare <sup>1, 2, 3</sup> ∧ ⊠, Carolyn Meaney <sup>1</sup>, James Powell <sup>1, 4</sup>, Barbara Slevin <sup>5</sup>, Breda O' Brien <sup>5</sup>, Lorraine Power <sup>1</sup>, Nuala H. O' Connell <sup>1, 2, 4</sup>, Cillian F. De Gascun <sup>3</sup>, Colum P. Dunne <sup>2, 4</sup>, Patrick J. Stapleton <sup>1, 2</sup>

#### Emergence of a novel SARS-CoV-2 Pango lineage B.1.1.526 in West Bengal, India

Rakesh Sarkar ª, Ritubrita Saha ª, Pratik Mallick <sup>b</sup>, Ranjana Sharma ª, Amandeep Kaur <sup>c</sup>, Shanta Dutta ª, Mamta Chawla-Sarkar ª 은 쯔

#### Assessment of Inter-Laboratory Differences in SARS-CoV-2 Consensus Genome Assemblies between Public Health Laboratories in Australia

by Charles S. P. Foster <sup>1,2,\*</sup> Rowena A. Bull <sup>2,5</sup> Charles S. P. Foster <sup>1,2,\*</sup> Charles C. Bull <sup>2,5</sup> Charles C. Bull <sup>2,2</sup> Charles C. Bul

#### Imported SARS-CoV-2 Variants of Concern Drove Spread of Infections across Kenya during the Second Year of the Pandemic

```
by & Carolyne Nasimiyu <sup>1,2,†</sup> <sup>(1)</sup>, <sup>(2)</sup>, <sup>(2)</sup>,
```

Short communication

The dynamic change of SARS-CoV-2 variants in Sierra Leone

Lei Lin <sup>a, 1</sup>, Juling Zhang <sup>b, 1</sup>, James Rogers <sup>c</sup>, Allan Campbell <sup>d</sup>, Jianjun Zhao <sup>a</sup>, Doris Harding <sup>d</sup>, Foday Sahr <sup>c</sup>, Yongjian Liu <sup>a</sup> 스 떡, Isata Wurie <sup>c</sup> 스

#### The rise and spread of the SARS-CoV-2 AY.122 lineage in Russia 👌

Galya V Klink, Ksenia R Safina, Elena Nabieva, Nikita Shvyrev, Sofya Garushyants, Evgeniia Alekseeva, Andrey B Komissarov, Daria M Danilenko, Andrei A Pochtovyi, Elizaveta V Divisenko, Lyudmila A Vasilchenko, Elena V Shidlovskaya, Nadezhda A Kuznetsova, The Coronavirus Russian Genetics Initiative (CoRGI) Consortium, Anna S Speranskaya, Andrei E Samoilov, Alexey D Neverov, Anfisa V Popova, Gennady G Fedonin, The CRIE Consortium, Vasiliy G Akimkin, Dmitry Lioznov, Vladimir A Gushchin, Vladimir Shchur, Georgii A Bazykin ⊠ Author Notes

Virus Evolution, Volume 8, Issue 1, 2022, veac017,

#### Three SARS-CoV-2 recombinants identified in Brazilian children

Luciane Sussuchi da Silva Dasa

## First flagging of Omicron (B.1.1.529) variant

| thomasppeacock commented on Nov 23, 2021 • edited by chrisruis                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------|--|
| New proposed lineage                                                                                                     |  |
| Rew proposed inteage                                                                                                     |  |
| by form cabook                                                                                                           |  |
| Description                                                                                                              |  |
| Sub-lineage of: B.1.1                                                                                                    |  |
| Earliest Sequence: 2021-11-11                                                                                            |  |
| Latest Sequence: 2021-11-13                                                                                              |  |
| Countries circulating: Botswana (3 genomes), Hong Kong ex S. Africa (1 genome, partial)                                  |  |
| Description                                                                                                              |  |
| Description:<br>Conserved Snike mutations - 467V A69-70 T951 G142D/A143-145 A211/L2121 inc214EPE G339D S3711 S373P S375E |  |
| KAITN NAADK GAAGS SATTN TA78K FARAA QA3R GA93R GA93R GA98R N51Y Y505H T547K D616 (H655Y N679K                            |  |
| P681H. N764K, D796Y, N856K, Q954H, N969K, L981F                                                                          |  |
|                                                                                                                          |  |
| Conserved non-Spike mutations - NSP3 – K38R, V1069Ι, Δ1265/L1266Ι, Α1892Τ; NSP4 – T492Ι; NSP5 – P132H; NSP6 –            |  |
| Δ105-107, A189V; NSP12 – P323L; NSP14 – I42V; E – T9I; M – D3G, Q19E, A63T; N – P13L, Δ31-33, R203K, G204R               |  |
| Currently only 4 sequences so would recommend monitoring for now. Export to Asia implies this might be more widespread   |  |
| than sequences alone would imply. Also the extremely long branch length and incredibly high amount of spike mutations    |  |
| suggest this could be of real concern (predicted escape from most known monoclonal antibodies)                           |  |
| Ganomas                                                                                                                  |  |
| EPI ISL 6590608 (partial RBD Sanger sequencing from Hong Kong)                                                           |  |
| EPI_ISL_6640916                                                                                                          |  |
| EPI_ISL_6640919                                                                                                          |  |
| EPI_ISL_6640917                                                                                                          |  |
|                                                                                                                          |  |
|                                                                                                                          |  |
|                                                                                                                          |  |
|                                                                                                                          |  |



Tom Peacock, Imperial College

#### UShER-based phylogenetic analysis with the first Omicron sequences in red



## 150K+ downloads on bioconda



## **Press coverage**



① JUNE 23, 2022
New phylogenetic tool can handle the SARS-CoV-2 data load

by Kiran Kumar and Katherine Connor, University of California - San Diego



#### How the Delta variant took over

The Delta variant accounts for 90 per cent of new Covid-19 cases in the UK. Scientists fear its global spread is going unchecked



## New phylogenomic platform identifies increased recombination rates in SARS-CoV-

2

IIC SANTA CRII7

NEWSCENTER

Home / 2022 / April / Genomics Institute tool becomes primary method to identify lineages of COVID-19 worldwide

## Genomics Institute tool becomes primary method to identify lineages of COVID-19 worldwide



April 04, 2022 By Emily Cerf

() MAY 10, 2021

New tools enable rapid analysis of coronavirus sequences and tracking of variants

#### TheScientist EXPLORING LIFE, INSPIRING INNOVATION

#### Plenty of Evidence for Recombination in SARS-CoV-2

Different variants of the virus behind the COVID-19 pandemic are swapping chunks of genetic material, but it's not yet clear what implications that may have for public health.



#### Nature Papers Present Nautilus Genome, Tool to Analyze Single-Cell Data, More

May 13, 2021



June 21, 2022 By Rose Miyatsu

#### NEWSCENTER

## **Community response**



It is so exciting to see this: using the vast quantity of sequencing being done in US to identify introductions to each state, and potential sources. Just the beginning of the future of genomic epi.

Would not be possible w/o large seq program and brand-new comp tools (UsHER)

#### Russ Corbett @RussCorbett · Oct 1

Introducing cluster-tracker: a daily-updated website for exploring the geographic spread of SARS-CoV-2 across the US. Check it out here clustertracker.gi.ucsc.edu

#### Show this thread



1:58 PM · Oct 1, 2021 · Twitter Web App

1 Retweet 8 Likes



...

What I love is that it uses the big tree (millions of genomes), which was unthinkable 2 years ago.

#### 1:59 PM · Oct 1, 2021 · Twitter Web App

#### 1 Retweet 1 Like



Two quantum leaps in phylogenetics over the last two years.

Trees of millions of sequences updated \*every day\* 🐺 View trees of millions of sequences \*in your browser\*

Thanks to amazing work from @yatishturakhia @RussCorbett and @theosanderson (and supporting actors ofc)

Russ Corbett @RussCorbett · Nov 11, 2021 We hit a huge milestone today: the UShER tree is now over 5M sequences! 🎉 I'm 99% sure it's the largest phylogeny ever inferred in terms of the number of samples (but let me know if you know of one larger), and it's growing every day!





...

It's hard to overstate just how much large-scale microbial sequence analysis and visualization methods have advanced in just the past few years. Many of the traditional phylogenetic tools and algorithms just don't scale to millions or tens of millions of sequences. Amazing stuff.

#### Russ Corbett @RussCorbett · May 20

10.048.466! That's a lot of #SARSCoV2 genomes in the single largest phylogeny ever that we update and optimize every single day! Here, I'll explain how we are doing pandemic-scale phylogenomics.

Show this thread

4 Retweets 28 Likes



4:34 PM · May 20, 2022 from Palo Alto, CA · Twitter for Android

13 Retweets 57 Likes

# **TURAKHIA LAB**

## We are hiring at all levels!

- Computational Genomics / Bioinformatics
- High-performance computing (HPC)
- GPU / FPGA computing
- Computer Architecture
- Hardware-Software Co-design
- VLSI Design





Webpage: <u>https://turakhia.eng.ucsd.edu/</u> Email: <u>yturakhia@ucsd.edu</u>