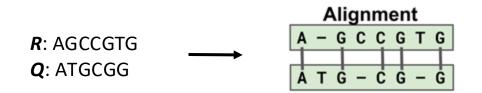


Electrical and Computer Engineering JACOBS SCHOOL OF ENGINEERING

TURAKHIA LAB

TALCO: <u>Tiling Genome Sequence Alignment</u> using <u>Convergence of Traceback Pointers</u>

Sumit Walia, Cheng Ye, Arkid Bera, Dhruvi Lodhavia and Yatish Turakhia University of California San Diego


- Emergence of Long Genome Sequence Alignment (LGSA)
- Current LGSA algorithms, accelerators and their limitations
- **TALCO**: A tiling technique based on convergence of traceback pointers for long genome sequence alignment
- Key Contributions and Results
- Conclusion

Outline

- Emergence of Long Genome Sequence Alignment (LGSA)
- Current LGSA algorithms, accelerators and their limitations
- **TALCO**: A tiling technique based on convergence of traceback pointers for long genome sequence alignment
- Key Contributions and Results
- Conclusion

Genome Sequence Alignment

• Sequence alignment: Given two sequences, Reference (R) and Query (Q), assign gaps ("–") in R and Q to produce a valid alignment that maximizes the alignment score

Third-generation sequencing technologies (produce reads of length 10 kb - 4 Mb), leads to major breakthroughs in recent past:

METHOD OF THE YEAR: LONG-READ SEQUENCING

To large-scale projects and individual labs, long-read sequencing has delivered new vistas and long wish lists for this technology's future. By Vivien Marx

nature methods.

Volume 20 | January 2023 | 6-11 | 6

Oxford Nanopore Technologies (ONT)

Pacific Biosciences (PacBio)

Marx, Vivien. "Method of the year: long-read sequencing." Nature Methods 20.1 (2023): 6-11.

TALCO: Tiling Genome Sequence Alignment using Convergence of Traceback Pointers

- Third-generation sequencing technologies (produce reads of length 10 kb - 4 Mb), leads to major breakthroughs in recent past:
 - Human Genome Assembly

Abstract

Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion–base pair sequence

Nurk, Sergey, et al. "The complete sequence of a human genome." Science 376.6588 (2022): 44-53.

- Third-generation sequencing technologies (produce reads of length 10 kb - 4 Mb), leads to major breakthroughs in recent past:
 - **o** Human Genome Assembly
 - Rapid genetic diagnosis

Fastest DNA sequencing technique helps undiagnosed patients find answers in mere hours

A research effort led by Stanford scientists set the first Guinness World Record for the fastest DNA sequencing technique, which was used to sequence a human genome in just 5 hours and 2 minutes.

January 12, 2022 - By Hanae Armitage

Researchers were able to quickly determine that Matthew Kunzman's **heart failure** was the result of a **genetic condition** — a finding that cleared the way for him to be placed on a heart transplant list immediately. *Courtesy of Jenny Kunzman*

Armitage, Hamae. "Fastest DNA sequencing technique helps undiagnosed patients find answers in mere hours." News Center 12 (2022).

- Third-generation sequencing technologies (produce reads of length 10 kb - 4 Mb), leads to major breakthroughs in recent past:
 - Human Genome Assembly
 - Rapid genetic diagnosis
 - Characterize structural variations and complex regions

Article

Patterns of somatic structural variation in human cancer genomes

1	https://doi.org/10.1038/s41586-019-1913-9							
	Received: 22 September 2017							
	Accepted: 18 November 2019							
1	Published online: 5 February 2020							

Yálong Li^{rasen}, Nicola D. Roberts¹⁰⁸, Jeremiah A. Wala^{14,108}, Ofer Shapisa^{14,14,10}, Steven E. Schumacher^{14,1}, Kiran Kuma^{14,1}, Biza Khurana⁴, Sebastian Waszah², Jan O. Korbel¹, Jame E. Haber, Marcin Insieliniki¹, PCAWO Structural Variation Working Group¹⁰, Joachen Weisecherfeldt¹¹, Rameen Beroukhim^{14,14}, Poter J. Campbell¹⁰⁹ & PCAWO Concortekm¹⁰

ARTICLE

Structural Variation of Chromosomes in Autism Spectrum Disorder

Christian R. Marshall,¹ Abdul Noor,² John B. Vincent,² Anath C. Lionel,¹ Lars Feuk,¹ Jennifer Skaug,¹ Mary Shago,³ Rainald Moessner,¹ Dalila Pinto,¹ Yan Ren,¹ Bhooma Thiruvahindrapduram,¹ Andreas Fiebig,⁶ Stefan Schreiber,⁶ Jan Friedman,⁷ Cees E.J. Ketelaars,⁸ Yvonne J. Vos,⁸ Can Ficicioglu,⁹ Susan Kirkpatrick,¹⁰ Rob Nicolson,¹¹ Leon Sloman,² Anne Summers,¹² Clare A. Gibbons,¹² Ahmad Teebi,⁴ David Chitayat,⁴ Rosanna Weksberg,⁴ Ann Thompson,¹³ Cathy Vardy,¹⁴ Vicki Crosbie,¹⁴ Sandra Luscombe,¹⁴ Rebecca Baatjes,¹ Lonnie Zwaigenbaum,¹⁵ Wendy Roberts,^{5,16} Bridget Fernandez,¹⁴ Peter Szatmari,¹³ and Stephen W. Scherer^{1,*} Circulation: Genomic and Precision Medicine Volume 14, Issue 4, August 2021 https://doi.org/10.1161/CIRCGEN.120.003223

RESEARCH LETTERS

Long-Read Sequence Confirmed a Large Deletion Including *MYH6* and *MYH7* in an Infant of Atrial Septal Defect and Atrial Arrhythmias

TALCO: Tiling Genome Sequence Alignment using Convergence of Traceback Pointers

- Third-generation sequencing technologies (produce reads of length 10 kb 4 Mb), leads to major breakthroughs in recent past:
 - O Human Genome Assembly
 - Rapid genetic diagnosis
 - Characterize structural variations and complex regions
- New insights into the evolution of different species through whole genome analysis

Human

Chimpanzee

Orangutan

TALCO: Tiling Genome Sequence Alignment using Convergence of Traceback Pointers

- Third-generation sequencing technologies (produce reads of length 10 kb - 4 Mb), leads to major breakthroughs in recent past:
 - o Human Genome Assembly
 - Rapid genetic diagnosis
 - Characterize structural variations and complex regions
- New insights into the evolution of different species through whole genome analysis

Bottlenecked by LGSA

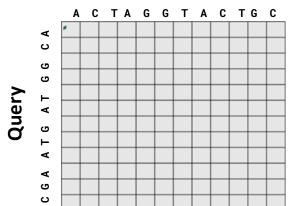
Outline

- Emergence of Long Genome Sequence Alignment
- Current LGSA algorithms, accelerators and their limitations
- **TALCO**: A tiling technique based on convergence of traceback pointers for long genome sequence alignment
- Key Contributions and Results
- Conclusion

Broad Classification of Alignment Algorithms

Classical Dynamic Programming (DP) Algorithms

Non-Classical Algorithms


Ex: Needleman-Wunsch, Smith-Waterman

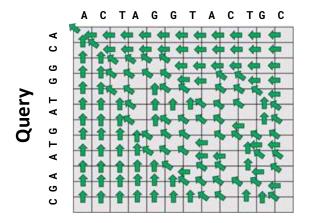
Ex: WFA, O(ND)

Classical DP based Alignment Algorithms

Classical Dynamic Programming (DP) Algorithms

Ex: Needleman-Wunsch, Smith-Waterman

Reference


Non-Classical Algorithms

Ex: WFA, O(ND)

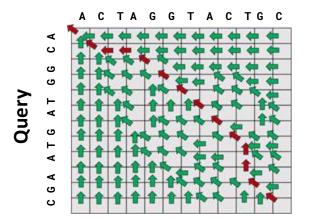
Classical DP based Alignment Algorithms

Classical Dynamic Programming (DP) Algorithms

Ex: Needleman-Wunsch, Smith-Waterman

Reference

Non-Classical Algorithms


Ex: WFA, O(ND)

1. Matrix Fill (Store traceback pointers)

Classical DP based Alignment Algorithms

Classical Dynamic Programming (DP) Algorithms

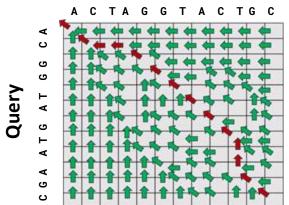
Ex: Needleman-Wunsch, Smith-Waterman

Reference

Non-Classical Algorithms

Ex: WFA, O(ND)

AC												
AC	-	-	G	G	Т	Α	G	Т	Α	Α	G	С

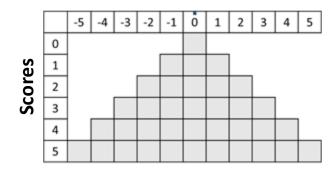

1. Matrix Fill (Store traceback pointers)

2. Optimal traceback path

Non-Classical Alignment Algorithms

Classical Dynamic Programming (DP) Algorithms

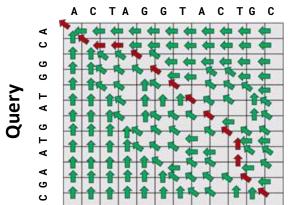
Ex: Needleman-Wunsch, Smith-Waterman



Reference

Non-Classical Algorithms

Ex: WFA, O(ND)

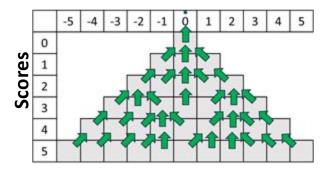


- 1. Matrix Fill (Store traceback pointers)
- 2. Optimal traceback path

Non-Classical Alignment Algorithms

Classical Dynamic Programming (DP) Algorithms

Ex: Needleman-Wunsch, Smith-Waterman


Reference

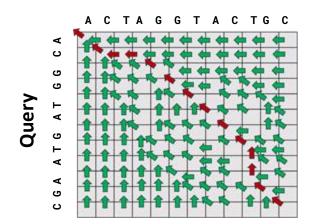
- 1. Matrix Fill (Store traceback pointers)
- 2. Optimal traceback path

Ex: WFA, O(ND)

Diagonals

Non-Classical Algorithms

1. Matrix Fill (Store traceback pointers)

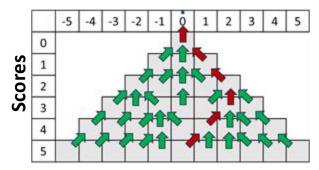

TALCO: Tiling Genome Sequence Alignment using Convergence of Traceback Pointers

Non-Classical Alignment Algorithms

Classical Dynamic Programming (DP) Algorithms

Ex: Needleman-Wunsch, Smith-Waterman

Reference


1. Matrix Fill (Store traceback pointers)

2. Optimal traceback path

Non-Classical Algorithms

Ex: WFA, O(ND)

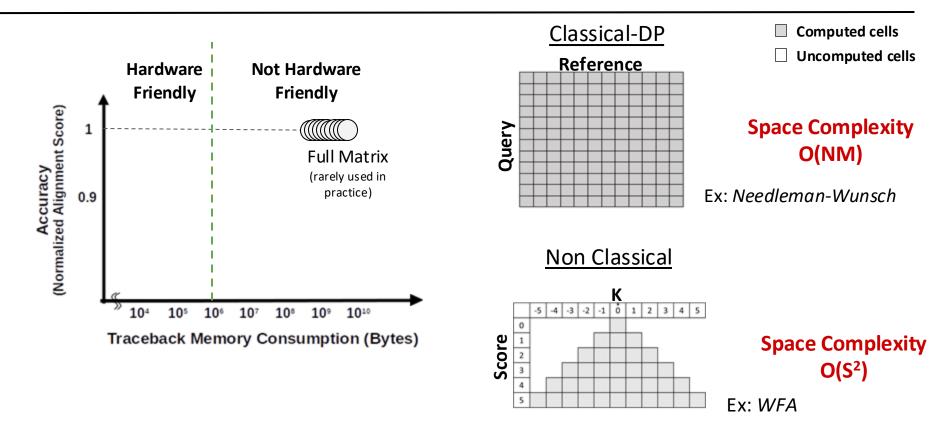
1. Matrix Fill (Store traceback pointers)

2. Optimal traceback path

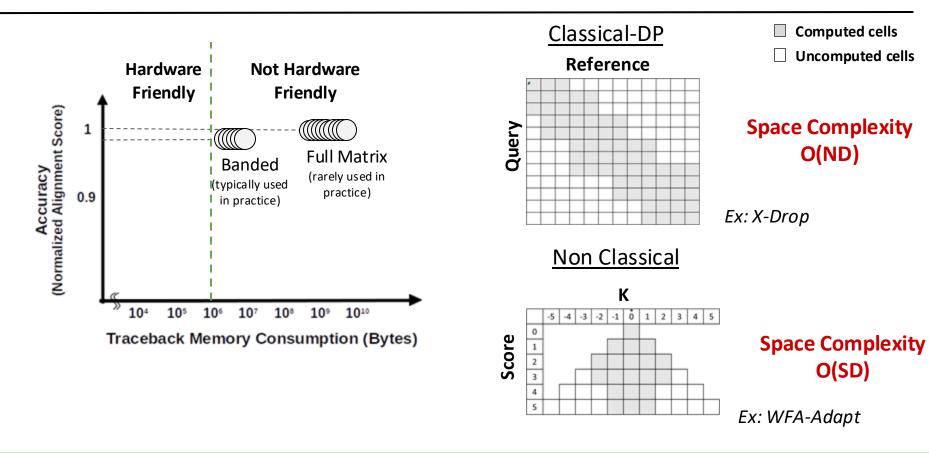
Comparison: Classical-DP and Non-Classical

Classical Dynamic Programming (DP) Algorithms

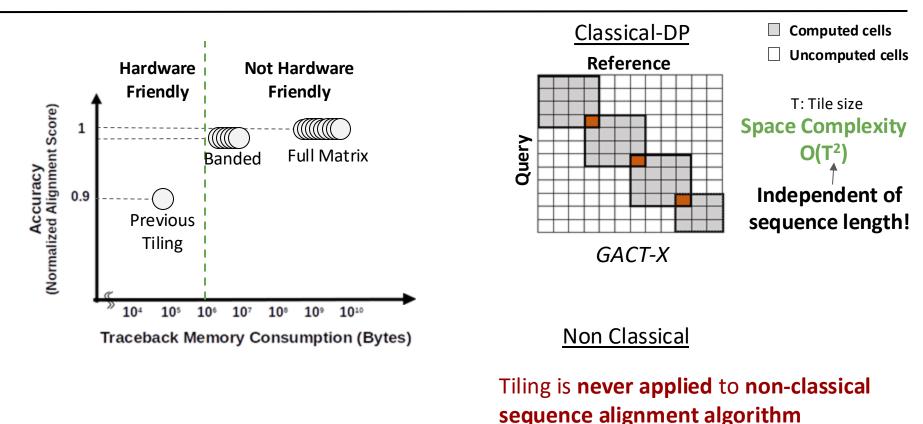
Non-Classical Algorithms


Ex: Needleman-Wunsch, Smith-Waterman

Ex: WFA, O(ND)


Both categories of algorithms produce optimal alignments

Uniform dependencies	Non-Uniform dependencies
Easier to accelerate	Harder to accelerate
More popular	Very Fast for similar sequences


Full Matrix Sequence Alignment Algorithms

Banded Sequence Alignment Algorithms

Tiling heuristic

TALCO: Tiling Genome Sequence Alignment using Convergence of Traceback Pointers

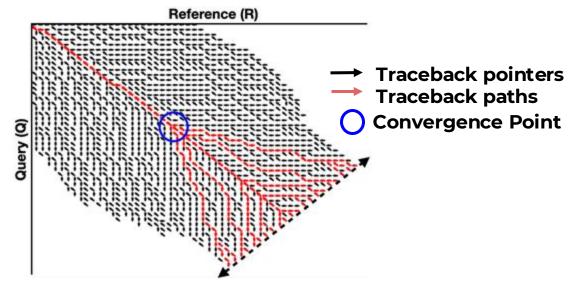
Architecture Papers Adopting Tiling Heuristics

- GACT Darwin: A Genomics Co-processor Provides up to 15,000X Acceleration on Long Read Assembly (ASPLOS 2018 Best Paper Award)
- GACT-X Darwin-WGA: A Co-processor Provides Increased Sensitivity in Whole Genome Alignments with High Speedup

Lower accuracy imposes challenges for tiling-based accelerators to be adopted in critical real-world applications (e.g. medical diagnoses)

Van der Auwera, Geraldine A., et al. "From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline." Current protocols in bioinformatics 43.1 (2013

- **RAPIDx**: High-performance ReRAM processing in-memory accelerator for sequence alignment (**TCAD 2023**)
- GMX: Instruction Set Extensions for Fast, Scalable, and Efficient Genome Sequence Alignment (MICRO 2023)
- Scrooge: a fast and memory-frugal genomic sequence aligner for CPUs, GPUs, and ASICs (Bioinformatics 2023)


TALCO: Tiling Genome Sequence Alignment using Convergence of Traceback Pointers

Outline

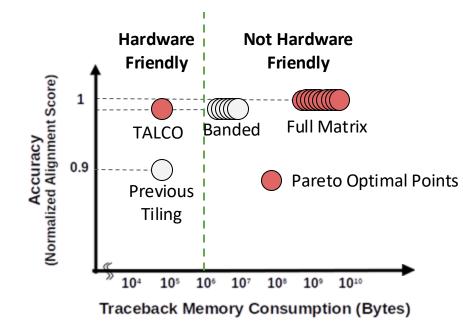
- Emergence of Long Genome Sequence Alignment
- Current LGSA algorithms, accelerators and their limitations
- **TALCO**: A tiling technique based on convergence of traceback pointers for long genome sequence alignment
- Key Contributions and Results
- Conclusion

Key Insight: Convergence of Traceback Paths

TALCO (<u>T</u>iling Long Genome <u>Al</u>ignment using <u>Co</u>nvergence of Traceback Pointers) is based on the following observation:

Experiment: Pairwise sequence alignment using Needleman-Wunsch with X-Drop banding

TALCO: Tiling technique for long genome alignment

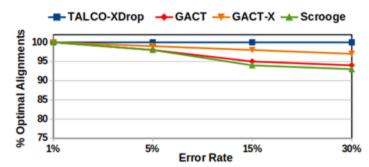

TALCO algorithm has two phases:

- 1. Stores traceback pointers till the **Marker**
- Find point of convergence of traceback pointers using pointer-redirection

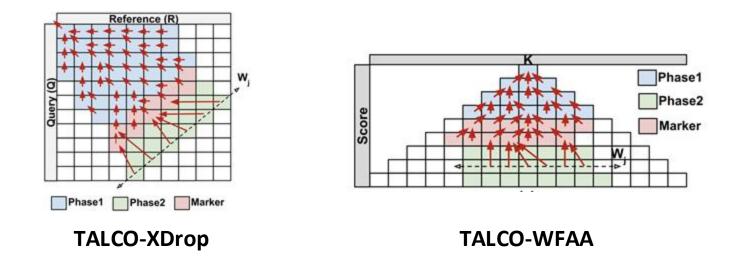
TALCO applied to X-Drop Algorithm

TALCO is on the Pareto Optimal Frontier

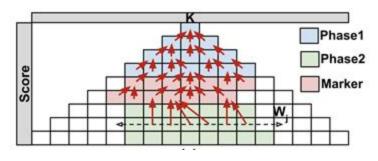
- Constant Space complexity
- Guarantees optimality under banding constraints


Outline

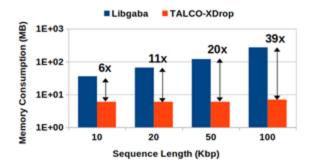
- Emergence of Long Genome Sequence Alignment
- Current LGSA algorithms, accelerators and their limitations
- **TALCO**: A tiling technique based on convergence of traceback pointers for long genome sequence alignment

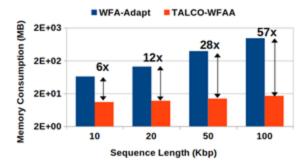

• Key Contributions and Results

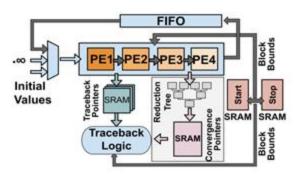
• Conclusion


1. TALCO, guarantees optimality under banding constraints

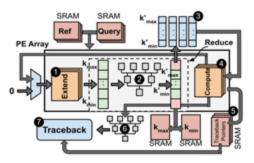
- 1. TALCO, guarantees optimality under banding constraints
- 2. We applied TALCO to X-Drop (TALCO- XDrop) and WFA-Adapt (TALCO-WFAA)



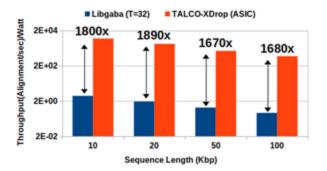

- 1. TALCO, guarantees optimality under banding constraints
- 2. We applied TALCO to X-Drop (**TALCO- XDrop**) and WFA-Adapt (**TALCO-WFAA**)
- TALCO-WFAA is the first accelerator based on the WFA-Adapt algorithm capable of performing arbitrary long sequence alignments

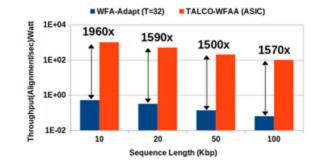

TALCO-WFAA

- 1. TALCO, guarantees optimality under banding constraints
- 2. We applied TALCO to X-Drop (**TALCO- XDrop**) and WFA-Adapt (**TALCO-WFAA**)
- TALCO-WFAA is the first accelerator based on the WFA-Adapt algorithm capable of performing arbitrary long sequence alignments
- TALCO-XDrop and TALCO-WFAA (software) achieves up to 39x and 57x improvement in memory footprint, respectively, compared to software baselines



- 1. TALCO, guarantees optimality under banding constraints
- 2. We applied TALCO to X-Drop (**TALCO- XDrop**) and WFA-Adapt (**TALCO-WFAA**)
- TALCO-WFAA is the first accelerator based on the WFA-Adapt algorithm capable of performing arbitrary long sequence alignments
- TALCO-XDrop and TALCO-WFAA (software) achieves up to 39x and 57x improvement in memory footprint, respectively, compared to software baselines
- 5. Designed hardware accelerators for TALCO- XDrop and TALCO-WFAA




TALCO-XDrop hardware design

TALCO-WFAA hardware design

- 1. TALCO, guarantees optimality under banding constraints
- 2. We applied TALCO to X-Drop (**TALCO- XDrop**) and WFA-Adapt (**TALCO-WFAA**)
- TALCO-WFAA is the first accelerator based on the WFA-Adapt algorithm capable of performing arbitrary long sequence alignments
- TALCO-XDrop and TALCO-WFAA (software) achieves up to 39x and 57x improvement in memory footprint, respectively, compared to software baselines
- 5. Designed hardware accelerators for TALCO- XDrop and TALCO-WFAA
- TALCO-XDrop and TALCO-WFAA (ASIC) achieves up to ~1,900X and ~2,000X, respectively, improvement in alignment throughput/watt over software baselines

- 1. TALCO, guarantees optimality under banding constraints
- 2. We applied TALCO to X-Drop (**TALCO- XDrop**) and WFA-Adapt (**TALCO-WFAA**)
- TALCO-WFAA is the first accelerator based on the WFA-Adapt algorithm capable of performing arbitrary long sequence alignments
- TALCO-XDrop and TALCO-WFAA (software) achieves up to 39x and 57x improvement in memory footprint, respectively, compared to software baselines
- 5. Designed hardware accelerators for TALCO- XDrop and TALCO-WFAA
- TALCO-XDrop and TALCO-WFAA (ASIC) achieves up to ~1,900X and ~2,000X, respectively, improvement in alignment throughput/watt over software baselines
- 7. We synthesized TALCO-XDrop and TALCO-WFAA for FPGAs available on the Amazon EC2 FPGA instances

https://github.com/TurakhiaLab/TALCO/blob/main/hardware/README.md

Building on AWS EC2 F1 instance

Follow the below instructions to execute TALCO-XDrop and TALCO-WFAA on the AWS EC2 F1 instance, f1.2xlarge

Clone aws-fpga repository

git clone https://github.com/aws/aws-fpga cd aws-fpga source vitis_runtime_setup.sh

Clone TALCO repository

git clone https://github.com/TurakhiaLab/TALCO.git export TALCO_DIR=\$PMD/TALCO cd TALCO/hardware/TALCO-XDrop

Steps for running on the EC2 F1 instance, f1.2xlarge (MODE-hw)

source \$TALCO_DIR/hardware/scripts/run.sh \$TALCO_DIR/dataset/sequence.fa TALCO_XDrop.awsxclbin

- 1. TALCO, guarantees optimality under banding constraints
- 2. We applied TALCO to X-Drop (**TALCO- XDrop**) and WFA-Adapt (**TALCO-WFAA**)
- TALCO-WFAA is the first accelerator based on the WFA-Adapt algorithm capable of performing arbitrary long sequence alignments
- TALCO-XDrop and TALCO-WFAA (software) achieves up to 39x and 57x improvement in memory footprint, respectively, compared to software baselines
- 5. Designed hardware accelerators for TALCO- XDrop and TALCO-WFAA
- TALCO-XDrop and TALCO-WFAA (ASIC) achieves up to ~1,900X and ~2,000X, respectively, improvement in alignment throughput/watt over software baselines
- 7. We synthesized TALCO-XDrop and TALCO-WFAA for FPGAs available on the Amazon EC2 FPGA instances

https://github.com/TurakhiaLab/TALCO/

HPCA Artifact Evaluation

Outline

- Emergence of Long Genome Sequence Alignment
- Current techniques and their **limitations** to **hardware accelerate** long genome sequence alignment
- **TALCO**: A tiling technique based on convergence of traceback pointers for long genome sequence alignment
- Key Contributions and Results
- Conclusion

Conclusion

- We present TALCO, a novel tiling technique for long genome sequence alignment
 - Maintains a constant memory footprint
 - Ensures **optimal alignments** under banding constraints
- We applied TALCO to X-Drop (TALCO-XDrop) and WFA-Adapt (TALCO-WFAA)
- TALCO-XDrop (TALCO-WFAA) software achieve up to **39X** (**57X**) improvement in **memory footprint** for long alignments compared to software baselines
- We present hardware accelerator designs for TALCO-XDrop and TALCO-WFAA
- TALCO-XDrop (TALCO-WFAA) ASIC achieves up to **1,900X** (**2,000X**) improvement in **alignment throughput/watt** over software baselines implementing the same algorithm

Electrical and Computer Engineering JACOBS SCHOOL OF ENGINEERING

TURAKHIA LAB

TALCO: <u>Tiling Genome Sequence Alignment</u> using <u>Convergence of Traceback Pointers</u>

Sumit Walia Ph.D student

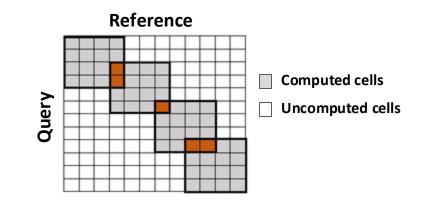
Cheng Ye MS student

Arkid Bera MS student

Dhruvi L. MS student

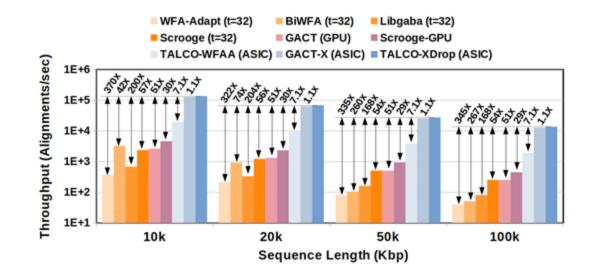
Yatish Turakhia Assistant Professor, UCSD

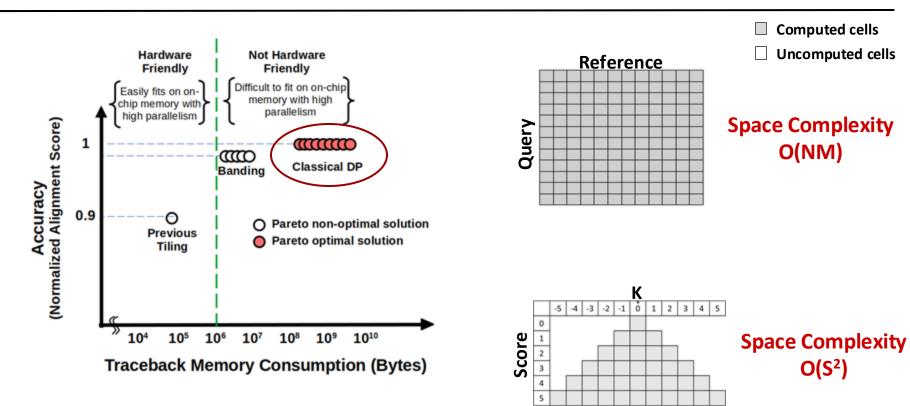
Thank you!


TALCO

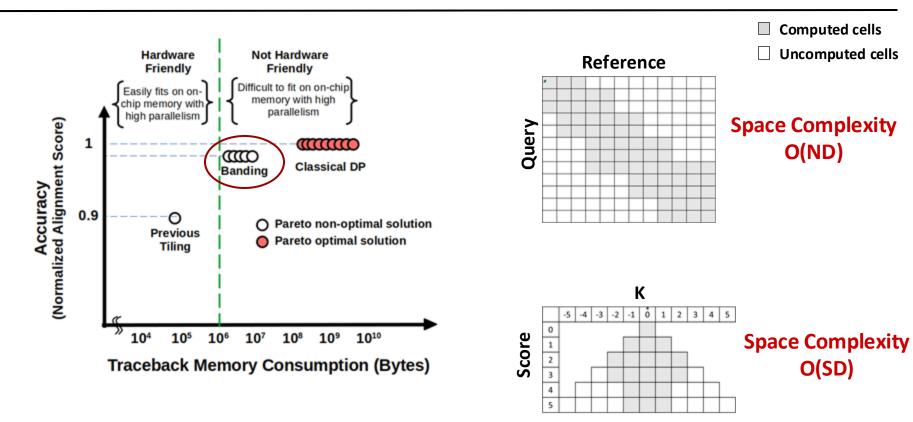
Electrical and Computer Engineering JACOBS SCHOOL OF ENGINEERING

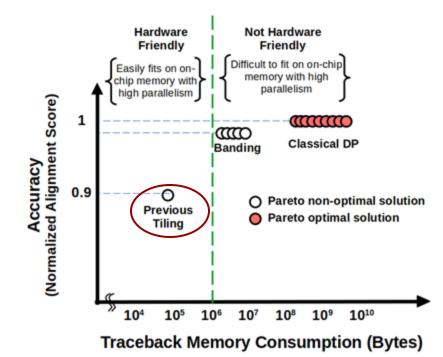
TURAKHIA LAB

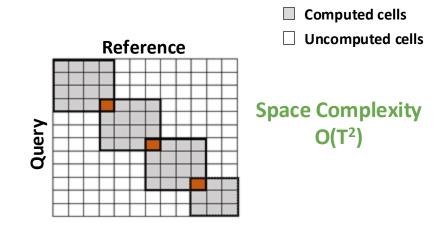

Additional Slides



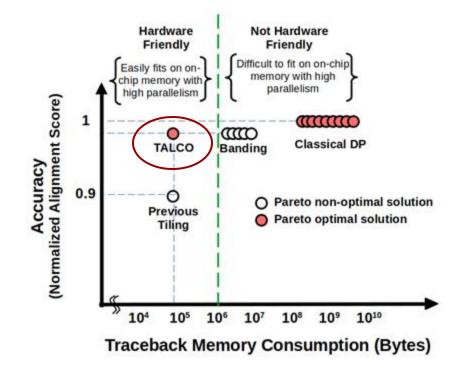
Key Results

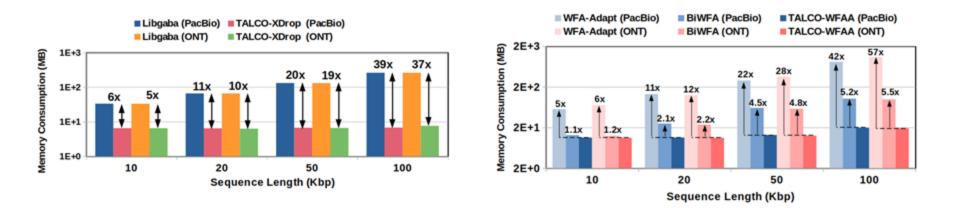

3. TALCO improves the alignment throughput over state-of-the-art GPU and ASIC baselines that implement tiling heuristics by over **50X** and **1.1X**, respectively.


Full Matrix Sequence Alignment Algorithms



Banded Sequence Alignment Algorithms


Tiling heuristic


Tiling is **never applied** to **non-classical sequence alignment algorithm**

TALCO on Pareto Plot

- Constant Space complexity
- Guarantees optimality under banding constraints (dynamic overlap between consecutive tiles)

We implemented TALCO-XDrop and TALCO-WFAA in software, and achieves up to 39x and
57x improvement in memory footprint, respectively, compared to software baselines

