Compressive Pangenomics using PanMANs

Prof. Yatish Turakhia Department of ECE, UCSD

Codebase and Preprint

https://github.com/TurakhiaLab/panman

Compressive Pangenomics Using Mutation-Annotated Networks

Sumit Walia,
Harsh Motwani, Kyle Smith,
Russell Corbett-Detig,
Yatish Turakhia
https://doi.org/10.1101/2024.07.02.601807

This article is a preprint and has not been certified by peer review [what does this mean?].

https://www.biorxiv.org/content/10.1101/2024.07.02.601807v1

Sumit Walia

Harsh Motwani

MAT: The data structure powering UShER

- **MAT**: mutation-annotated tree
- Stores:
 - Tree topology corresponding to the inferred phylogeny
 - A single **root sequence** (could be the reference genome)
 - Mutations inferred on each branch
- **Property:** sequence corresponding to every tip or internal node of the tree can be derived from the root sequence and the mutations on its path to the root

(Lemieux et al., Science 2021)

Limitations of UShER-MAT

 Reference-based G3179A, C6982T C8782T A17858G T28144C 0123456 C8986T **Root sequence** AGCTATT S1:AGATGCT 4:G,5:C S2:TGCTGCT C3037T, C14408T, A23403G T26512C 0:T 2:A **S1** S2

Limitations of UShER-MAT

- Reference-based
- Only stores substitutions ignores indels
 - Indels sometimes comprise lineage-defining mutations

Limitations of UShER-MAT

- Reference-based
- Only stores substitutions ignores indels
 - Indels sometimes comprise lineage-defining mutations
- Restricted to a single tree topology cannot represent complex mutations (e.g., recombination or horizontal gene transfer) violating the vertical mode of evolution

Summary of features in Pangenome formats

		VG	GFA	GBZ	PanGraph	UShER- MAT	tskit
Mutations	Lossless Sequence Encoding						
	Genomic Variation / m-WGA						
	Phylogenetic Relationship						
	Single-nucleotide Substitutions						
	Small Indels						<
	Structural Mutations						
	Complex Mutations						

Summary of features in Pangenome formats

		VG	GFA	GBZ	PanGraph	UShER- MAT	tskit	PanMAN (This work)
Mutations	Lossless Sequence Encoding							
	Genomic Variation / m-WGA					<		
	Phylogenetic Relationship							
	Single-nucleotide Substitutions							
	Small Indels							
	Structural Mutations							5
	Complex Mutations							

Inferred MSA, Phylogeny, and mutations all in one format! PanMAN is not just information-rich but also more compact and scalable

PanMAT: Pangenome Mutation-Annotated Tree

- Incorporating insertions and deletions (indels) into a MAT
 - MSA defines the coordinate system
 - Gaps treated as special characters

PanMAT: Pangenome Mutation-Annotated Tree

- Incorporating structural changes and rearrangements
 - Identify homologous blocks
 - MSA of homologous blocks
 - Block mutations are like substitutions to or from gaps

PanMAN: Pangenome Mutation-Annotated Network

- PanMAN: Generalization of PanMAT to represent complex mutations
- One or more PanMATs are connected with network edges (red dotted lines)
- Network Edges stores complex mutations (blue table), i.e., Horizontal Gene Transfer (HGT) and Recombination

PanMAN is the most compressive pangenomic format

Compression achieved by PanMAN compared to other formats

PanMAN is the most compressive pangenomic format

Compression achieved by PanMAN compared to other formats

PanMAN scales well relative to other formats

PanMAN scales well relative to other formats

SARS-CoV-2 genome coordinate

20

Pango Designation (WHO labels)	Mutation Type	Mutated Characters	Mutated Position	Mutated Length	Represented in PanMAN?
	Insertion	GAGCCAGAA	22205	9	Yes
	Deletion	N/A	11283	9	Yes
BA.1	Deletion	N/A	6513	3	Yes
(Omicron)	Deletion	N/A	21765	6	Yes*
	Deletion	N/A	21987	9	Yes*
	Deletion	N/A	22194	3	Yes
	Deletion	N/A	11288	9	Yes*
BA.2 (Omicron)	Deletion	N/A	21633	9	Yes
(Onneron)	Deletion	N/A	28362	9	Yes*
D4 (Commo)	Deletion	N/A	11288	9	Yes
P.1 (Gamma)	Insertion	AACA	28263	4	Yes
	Deletion	N/A	22029	6	Yes
B.1.617.2 (Delta)	Deletion	N/A	28271	1	Yes*
(Delta)	Deletion	N/A	28248	6	Yes
	Deletion	N/A	11288	9	Yes
B.1.1.7 (Alpha)	Deletion	N/A	21765	6	Yes
	Deletion	N/A	21991	3	Yes

PanMANs using likelihood

- Ancestral sequences in PanMAN can be inferred by a a variety of techniques:
 - Parsimony, e.g. Fitch algorithm
 - Likelihood, e.g. PastML, MPPA
- Appears to have a noticeable impact on the file sizes

	#	File size	Batio		
Dataset	sequences	PanMAT- PanMA Parsimony LK		- (LK/parsimony)	
	20	0.019	0.019	1	
	200	0.083	0.1	1.2	
Sars-CoV2	2000	0.68	0.91	1.3	
	20000	4.8	6.1	1.3	
	50	0.047	0.17	3.6	
RSV	500	0.137	0.65	4.7	
	5000	1.1	4.3	3.9	
ТР	40	1.9	9.3	4.9	
	400	5.1	39.7	7.8	

PanMAN Utility for Common Bioinformatic Analyses

