

DP-HLS: A High-Level Synthesis Framework for Accelerating Dynamic Programming Algorithms in Bioinformatics

Speakers (in order): Anshu Gupta**, Yingqi Cao*, Jason Liang*

*Department of Electrical and Computer Engineering **Department of Computer Science and Engineering

November 2024

Table of Contents

- Introduction
- Objectives
- Overview
- DP-HLS Front-End
- DP-HLS Back-End
- Results
- Summary

Table of Contents

- Introduction
- Objectives
- Overview
- DP-HLS Front-End
- DP-HLS Back-End
- Results
- Summary

Sequence Alignment in Bioinformatics

Dynamic Programming is the underlying algorithm for these applications

JACOBS SCHOOL OF ENGINEERING

DP-HLS: A High-Level Synthesis Framework for Accelerating Dynamic Programming Algorithms in Bioinformatics

Δ

2-D Dynamic Programming Paradigm

- Problem: Compare two sequences ACTC and AACTTC
- Solution ?

JACOBS SCHOOL OF ENGINEERING

Needleman-Wunsch Algorithm

9 DP-HLS: A High-Level Synthesis Framework for Accelerating Dynamic Programming Algorithms in Bioinformatics

JACOBS SCHOOL OF ENGINEERING

UC San Diego

List of Algorithmic variations in 2-D DP Paradigm

SI No.	Input Alphabets	Kernels	State-of-the-art Tools	Applications	Modifications in DP- HLS
1	DNA	Global Linear Alignment	BLAST, EMBOSS Stretcher	Similarity Search	N/A
2	DNA	Global Affine Alignment	BLAST, EMBOSS Needle	Accurate Similarity Search	Scoring
3	DNA	Local Linear Alignment	BLAST, FASTA, BLAT	Homology Search	Initialization and Traceback
4	DNA	Local Affine Alignment	BLAST, LASTZ	Whole Genome Alignment	Scoring, Initialization and Traceback
5	DNA	Global Two-piece Affine Alignment	Minimap2	Long Genome Alignment	Scoring
6	DNA	Overlap Alignment	CANU, Flye	Genome Assembly	Initialization and Traceback
7	DNA	Semi-global Alignment	BWA-MEM	Short Read Alignment	Initialization and Traceback

SI No.	Input Alphabets	Kernels	State-of-the-art Tools	Applications	Modifications in DP- HLS
8	Seq. Profiles	Profile Alignment	CLUSTAL-W, MUSCLE	Multiple Sequence Alignment	Sequence Alphabet and Scoring
9	Complex Nos.	Dynamic Time Warping Algorithm	SquiggleKit	Basecalling	Sequence Alphabet and Scoring
10	DNA	Viterbi Algorithm	HMMER, Augustus	Remote Homology Search, Gene Prediction	Scoring (no Traceback)
11	DNA	Banded Global Linear Alignment	BLAST, Bowtie	Fast Similarity Search	Scoring and Initialization
12	DNA	Banded Local Affine Alignment	Minimap2	Long Read Assembly	Initialization and Scoring (no Traceback)
13	DNA	Banded Global Two-piece Affine Alignment	Minimap2	Long Read Assembly	Scoring, Initialization and Traceback
14	Integers	Semi-global DTW	SquiggleFilter, RawHash	Basecalling	Sequence Alphabet and Scoring
15	Amino Acids	Local Linear Alignment with protein sequences	EMBOSS Water, BLASTp, DIAMOND	Protein Sequence Alignment	Sequence Alphabet and Scoring

Hardware Acceleration of 2-D DP Algorithms

2-D DP algorithm is computationally expensive!

Several existing work accelerates these algorithms on specialized hardware -ASICs/FPGAs.

Maps to Linear Systolic Array **Architecture**

Wavefront Parallelism

Hardware Acceleration of 2-D DP Algorithms

Examples of some existing works accelerating 2-D DP algorithms

X. Fei, Z. Dan, L. Lina, M. Xin, and Z. Chunlei, "Fpgasw: accelerating A. Haghi, S. Marco-Sola, L. Alvarez, D. Diamantopoulos, C. Hagleit-

Non-configurable, Requires hardware re-design from scratch

Y. Turakhia, S. D. Goenka, G. Bejerano, and W. J. Dally, "**Darwin-wga: A co-processor provides increased sensitivity in whole genome alignments with high speedup**," in 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2019, pp. 359–372.

International Symposium on Microarchitecture (MICRO), 2020, pp. 937–950.

T. Dunn, H. Sadasivan, J. Wadden, K. Goliya, K.-Y. Chen, R. Das, D. Blaauw, and S. Narayanasamy, "**SquiggleFilter: An Accelerator for Portable Virus Detection**," Sep. 2021, arXiv:2108.06610 [q-bio]. [Online].

High-Level Synthesis

Automated Design Process

Macroarchitecture specifications in C/C++ to RTL level structure

Vary constraints to generate multiple RTL implementations with single C/C++ algorithm

Optimal constraints required for optimal hardware design

C++/SystemC

HLS

RTL

JACOBS SCHOOL OF ENGINEERING

Table of Contents

- Introduction
- Objectives
- Overview
- DP-HLS Front-End
- DP-HLS Back-End
- Results
- Summary

Objective

Develop a generic framework to accelerate 2-D DP algorithms, which is:

- Highly Programmable
- Support many applications
- Create efficient hardware designs
- No hardware expertise
- Improve productivity

Table of Contents

- Introduction
- Objectives
- Overview
- DP-HLS Front-End
- DP-HLS Back-End
- Results
- Summary

DP-HLS - Overview

DP-HLS is a generic framework to accelerate 2-D DP algorithms, which is:

- Highly Programmable
- Support many applications
- Create efficient hardware designs
- No hardware expertise
- Improve productivity

DP-HLS Framework

DP-HLS is a generic framework to accelerate 2-D DP algorithms

DP-HLS Framework

UC San Diego

JACOBS SCHOOL OF ENGINEERING

DP-HLS – How it works

Step 1: Specify kernel configurations
Step 2: Simulate the kernel

Step 3: Perform synthesis and co-simulation **Step 4:** Analyze the implementation results

Step 5: Generate bitstream and deploy to FPGA

S-HLS

ront-en

Vitis HL Tool

AWS F1 FPGA

Table of Contents

- Introduction
- Objectives
- Overview
- DP-HLS Front-End
- DP-HLS Back-End
- Results
- Summary

UC San Diego JACOBS SCHOOL OF ENGINEERING

1. Initialize row and column scores

2. Customize data types and parameters

 Sequence Alphabet: DNA or RNA or Complex Sequence

typedef ap_uint<2>
 char_t;

- Number of scoring layers (N_LAYERS)
- Scoring parameters

```
struct ScoringParams {
    type_t mismatch;
    type_t match;
    type_t linear_gap;
} params;
```

UC San Diego JACOBS SCHOOL OF ENGINEERING

2. Customize data types and parameters

- Maximum Sequence Length (MAX_REFERENCE_LENGTH & MAX_QUERY_LENGTH)
- Traceback pointer data types and states

 enum TB_STATE {
 MM, INS, DEL
 } tb_next_state,
 tb_curr_state;

UC San Diego

JACOBS SCHOOL OF ENGINEERING

4. Specify Traceback Strategy

5. Specify parallelism

- N_{PE} → Number of processing elements → Defines Innerloop parallelism
- $N_B \rightarrow Number of parallel blocks$
- $N_{K} \rightarrow Number of kernels executed in parallel$
- N_B and $N_K \rightarrow$ **Defines outer**loop parallelism

Table of Contents

- Introduction
- Objectives
- Overview
- DP-HLS Front-End
- DP-HLS Back-End
- Results
- Summary

-2

Wavefront Scores Out Dependencies 2 3 1 1 -2 0 -5 -3 -8 -6

-2

UC San Diego

Wavefront Scores Out Dependencies 2 2 3 -1 1 1 -4 -2 0 -5 -7 -3 -8 -6 Х

UC San Diego JACOBS SCHOOL OF ENGINEERING

-2

-4

Wavefront Scores Out Dependencies 3 2 1 2 0 0 -3 -1 -6 -4

> UC San Diego JACOBS SCHOOL OF ENGINEERING

UC San Diego JACOBS SCHOOL OF ENGINEERING

JACOBS SCHOOL OF ENGINEERING

DP-HLS: A High-Level Synthesis Framework for Accelerating Dynamic Programming Algorithms in Bioinformatics

43

UC San Diego

JACOBS SCHOOL OF ENGINEERING

Backend – DP Mem

Backend – Create Systolic Array

JACOBS SCHOOL OF ENGINEERING

Backend – Inter-Chunk Dependency

Legends

UC San Diego

JACOBS SCHOOL OF ENGINEERING

46 DP-HLS: A High-Level Synthesis Framework for Accelerating Dynamic Programming Algorithms in Bioinformatics

Illustration – Previous Row Scores

Backend – Maximum Scores

Legends

Backend – TB Memory

Legends

UC San Diego

JACOBS SCHOOL OF ENGINEERING

Table of Contents

- Introduction
- Objectives
- Overview
- DP-HLS Front-End
- DP-HLS Back-End
- Results
- Summary

• DP-HLS Generates 1-D systolic Array Architecture

Note:

• V++ and Vitis HLS 2021.2 are used for compilation and cycle count profiling for all DP-HLS kernels.

- DP-HLS Generates 1-D systolic Array Architecture
- The Scaling is Stable Across Diverse Kernels

Note:

• V++ and Vitis HLS 2021.2 are used for compilation and cycle count profiling for all DP-HLS kernels.

- DP-HLS Generates 1-D systolic Array Architecture
- The Scaling is Stable Across Diverse Kernels
- Similar Throughput to RTL

Notes:

• The throughput is measured based on the cycle count in the Vitis HLS cosimulation (DP-HLS) and Vivado Waveform and Iverilog (Hardware baseline)

- DP-HLS Generates 1-D systolic Array Architecture
- The Scaling is Stable Across Diverse Kernels
- Similar Throughput to RTL
- Comparable Kernel Resource Utilization to RTL

Notes:

- Vivado 2021.2 are used for all hardware baselines. All complied for xcvu9p-flgb2104-2-I device.
- Since the original SquiggleFilter has a rewards bonus that is hard to adapt in DP-HLS, it is removed and becomes a SW kernel with only the diagonal and upper dependency

UC San Diego JACOBS SCHOOL OF ENGINEERING

- DP-HLS Generates 1-D systolic Array Architecture
- The Scaling is Stable Across Diverse Kernels
- Similar Throughput to RTL
- Comparable Kernel Resource Utilization to RTL
- 1.3x 32x Speedup to CPU Baseline

Notes:

Software baselines are deployed on an AWS compute-optimized **c4g.8xlarge** instance with the same cost as the F1 instance. Baselines: SeqAn3 [1-4, 6-7, 12, 11], EMBOSS Water [15], Minimap2 [5]

- DP-HLS Generates 1-D systolic Array Architecture
- The Scaling is Stable Across Diverse Kernels
- Similar Throughput to RTL
- Comparable Kernel Resource Utilization to RTL
- 1.3x 32x Speedup to CPU Baseline
- 1.41x 17.7x Speedup to GPU Baseline

Notes:

GPU baselines are deployed on an AWS P3.2xlarge instance (\$3.06/hr). Baselines: GASAL2 [2, 4, 12], CUDASW4++ [15]

- DP-HLS Generates 1-D systolic • Array Architecture
- The Scaling is Stable Across • **Diverse Kernels**
- Similar Throughput to RTL •
- **Comparable Kernel Resource** • Utilization to RTL
- 1.3x 32x Speedup to CPU • **Baseline**
- 1.41x 17.7x Speedup to GPU • **Baseline**
- **Higher Throughput than HLS** • **Baseline**

Notes:

• The baseline is Vitis Genomics Library (v2021.2) Smith-Waterman kernel

Latency

58 DP-HLS: A High-Level Synthesis Framework for Accelerating Dynamic Programming Algorithms in Bioinformatics UC San Diego JACOBS SCHOOL OF ENGINEERING

Conclusion

- We present DP-HLS, an **HLS framework** to design hardware accelerators for DP-based bioinformatics algorithms.
- The user **doesn't need hardware design backgrounds** to customize any hardware kernels.
- It is highly scalable and results in stable throughput and resource utilization scaling.
- The throughput and resource utilization are **comparable to accelerators with RTL designs**.
- Achieves a maximum 32x to 17x iso-cost speedup compared to CPU and GPU baselines respectively.

Acknowledgments

Thanks for watching!

Advisor:

• Yatish Turakhia (UCSD)

Collaborators:

• AMD-omics group

