
2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

TALCO: Tiling Genome Sequence Alignment using
Convergence of Traceback Pointers
Sumit Walia, Cheng Ye, Arkid Bera, Dhruvi Lodhavia and Yatish Turakhia

Department of Electrical and Computer Engineering
University of California San Diego

{swalia, chye, arbera, dlodhavia, yturakhia}@ucsd.edu

Abstract— Pairwise sequence alignment is one of the most
fundamental and computationally intensive steps in genome
analysis. With the improving costs and throughput of third-
generation sequencing technologies and the growing availability
of whole-genome datasets, longer alignments are becoming
more common in the field of bioinformatics. However, the
high memory demands of long alignments create significant
obstacles to hardware acceleration. Banding techniques allow
recovering high-quality alignments with lower memory, but they
also require more memory for long alignments than what is
typically available on-chip in hardware accelerators. Recently,
tiling-based hardware accelerators have made remarkable strides
in accelerating sequence alignment, achieving three to four orders
of magnitude improvement in alignment throughput over software
tools without any restrictions on alignment length. However, it
is crucial to note that existing tiling heuristics can cause the
alignment quality to degrade, which is a critical concern for the
wider adoption of accelerators in the field of bioinformatics. To
address this issue, this paper describes TALCO – a novel method
for tiling long sequence alignments, that, similar to prior tiling
techniques, maintains a constant memory footprint during the
acceleration step independent of alignment length. However, unlike
previous techniques, TALCO also ensures optimal alignments
under banding constraints. TALCO does this by leveraging the
convergence of traceback paths beyond a tile to a single point
on the boundary of that tile – a strategy that generalizes well to
a broad set of sequence alignment algorithms. We demonstrate
the advantages of TALCO by applying it to two different and
widely-used banded sequence alignment algorithms, X-Drop and
WFA-Adapt. To the best of our knowledge, this is the first time
that a tiling technique is being applied to a non-classical algorithm
for sequence alignment, such as WFA-Adapt. The TALCO tiling
strategy is beneficial to both software and hardware. When
implemented in software, the TALCO strategy reduces the memory
requirements for X-Drop and WFA-Adapt algorithms by up to
39× and 57×, respectively, and when implemented as ASIC
accelerator, it provides up to 1,900× and 2,000× improvement
in alignment throughput/watt over CPU baselines implementing
the same algorithms. Compared to state-of-the-art GPU and
ASIC baselines implementing tiling heuristics, TALCO provides
up to 50× and 1.1× improvement in alignment throughput,
respectively, while also maintaining a higher alignment quality.
Code availability: https://github.com/TurakhiaLab/TALCO.

I. INTRODUCTION

Pairwise genome sequence alignment is a fundamental
building block of many genomic analysis pipelines [1]–[4]
and has been studied extensively over the last several decades
[5]–[10]. With improved cost, accuracy, and throughput of
long-read genome sequencing technologies, coupled with the
widespread availability of complete whole-genome assemblies

Fig. 1: Accuracy versus memory trade-offs of different align-
ment techniques highlights how TALCO is Pareto optimal.
TALCO achieves the same accuracy as banding techniques
while matching the memory requirements of previous tiling
techniques.

for a large number of species and individual organisms, the
ability to align long genomic sequences has gained significant
importance in recent years [11]–[13]. In particular, long-
read sequencing has led to major breakthroughs in recent
history [14]. In genomic medicine, it helped achieve the fastest
genetic diagnosis of newborn patients [15]. It has been used to
better characterize structural variations and complex regions in
the human genome [16]. Long alignments are also essential in
comparative genomics to gain new insights into the evolution
of gene families and other genomic features by comparing
whole genomes of different species [17], [18].

In sequence alignment, a scoring system is generally used for
evaluating and optimizing the quality of different alignments.
Classical dynamic programming algorithms [19], [20] yield
optimal alignments under the most widely-accepted scoring
systems (Section II) but these algorithms are impractical for
long alignments due to high memory and computational de-
mands. Therefore, widely-used bioinformatic software packages
typically utilize various banding strategies for restricting the
alignment search space (Section II). This results in a minor
drop in alignment scores relative to full dynamic programming
but helps to compute long alignments under practical runtime
and memory constraints (Figure 1). However, the memory

https://github.com/TurakhiaLab/TALCO

requirement of these banded algorithms increases linearly
with sequence length, which poses significant challenges
for hardware acceleration of long alignments. On one hand,
the memory requirement is too large for performing long
alignments within the limited on-chip memory available on
hardware accelerators, and on the other hand, off-chip memory
does not offer sufficient bandwidth to achieve meaningful
acceleration [21]. This challenge was recently circumvented in
the Darwin co-processor [7] through a greedy tiling strategy
that allowed alignment subproblems to fit within the on-
chip memory, thereby greatly speeding up the compute-
intensive portions of the alignment step. This strategy was later
incorporated into several other genomic accelerators [8]–[10],
[22]–[25]. Although, with appropriate parameters, this strategy
can deliver optimal alignment results with a high degree of
certainty; however, it cannot guarantee the alignments to be
optimal or equivalent to their software counterpart which does
not employ the same tiling approach (Figure 1), which is a
critical concern in the field of bioinformatics and imposes
a barrier to the wider adoption of hardware accelerators in
real-world applications of critical significance, such as the
genomic diagnosis of patients [26]. Since sequence alignment
typically accounts for 30%-90% of the total execution time in
genomic workloads [27]–[29], based on Amdahl’s law [30],
there is diminishing return to accelerate this step further over the
three to four orders of magnitude speedup already achievable
with tiling-based accelerators. Instead, for wider adoption,
future hardware accelerators should commensurately focus
on improving and guaranteeing alignment quality.

To that end, in this paper, we introduce TALCO – a
novel strategy for tiling alignments using the convergence of
traceback pointers. TALCO is a highly generalizable strategy
that can be used to perform tiling on a wide range of banded
alignment algorithms while ensuring alignment result equiva-
lence. Alignment banding strategies are commonly employed
in bioinformatic software for long alignments and have been
widely accepted by the bioinformatics community [5], [31]–
[34]. This makes TALCO highly useful for the hardware
acceleration of existing algorithms for long genomic alignments.
The paper makes the following contributions:

1) We introduce a novel tiling strategy, TALCO, that
guarantees optimality under banding constraints, i.e.,
it can be applied to any banded sequence alignment
algorithm while guaranteeing that the alignment scores
are not degraded due to tiling. In that sense, TALCO is
complementary to existing accelerators [7]–[10], [22]–
[25] as it can be used to substitute their tiling heuristics
while assuring alignment quality. TALCO is based on
our unique insight that traceback pointers in alignments
have weak long-range dependencies, resulting in the
convergence of multiple alignment paths.

2) To demonstrate generalizability, we apply TALCO to
widely-used banded sequence alignment algorithms, X-
Drop and WFA-Adapt, which are based on very different
approaches. We call the modified algorithms TALCO-
XDrop and TALCO-WFAA, respectively. To the best of

our knowledge, TALCO-WFAA is the first accelerator
based on the WFA-Adapt algorithm capable of perform-
ing arbitrary long sequence alignments.

3) We demonstrate the benefits of TALCO through software
implementation of TALCO-XDrop and TALCO-WFAA
that achieve up to 39× and 57× improvement in memory
footprint, respectively, for long alignments compared to
software baselines. We will open-source our software
implementation on publication. We also demonstrate that
the convergence of traceback paths that TALCO leverages
in these algorithms happens fast, requiring only 3-15%
for redundant computation of cells in the overlapping
regions of tiles in TALCO for alignment error rates
ranging from 1-30%.

4) We present a hardware accelerator design for TALCO-
XDrop and TALCO-WFAA which can perform arbitrary
long alignments with a small on-chip memory require-
ment. We performed ASIC analysis of TALCO-XDrop
and TALCO-WFAA using FreePDK 45nm process
technology. TALCO-XDrop (TALCO-WFAA) requires
58.3mm2 (30.0mm2) area and 19.0W (32.9W) of power.
Overall, we found that TALCO-XDrop (TALCO-WFAA)
ASIC achieves up to 1,900× (2,000×) improvement in
alignment throughput/watt over software baselines imple-
menting the same algorithm. TALCO also improves the
alignment throughput over state-of-the-art GPU and ASIC
baselines that implement tiling heuristics by over 50×
and 1.1×, respectively. We have released our RTL code
and OpenROAD scripts for ASIC analysis, accessible
from GitHub (https://github.com/TurakhiaLab/TALCO).

5) We also synthesized TALCO-XDrop and TALCO-WFAA
for FPGAs available on the Amazon EC2 FPGA instances
(f1.2xlarge), which achieved operating frequencies of
119MHz and 166MHz, and throughput within 0.15× and
0.29× of ASIC implementations, respectively.

The rest of the paper is organized as follows. Section II
provides relevant background on genome sequence alignment,
banding techniques, and existing tiling techniques for long
genome sequence alignment. We then explain TALCO and
its application on two widely adopted sequence alignment
algorithms in Section III. Section IV describes the hardware
design of TALCO-XDrop and TALCO-WFAA. The experimen-
tal methodology is described in Section V. We present the
results in Section VI. Section VII describes the related work
and Section VIII concludes the paper.

II. BACKGROUND

Sequence Alignment: Given two input sequences, a query
sequence Q = q1, q2, .., qn, and a reference sequence R =
r1, r2, .., rm, the problem of pairwise sequence alignment is
to assign gaps (denoted by ‘−’) in R and Q to produce a
valid alignment that maximizes the alignment score [7]. In a
valid sequence alignment, each character in R and Q is aligned
with a corresponding character or a gap in the other sequence
(Figure 2b,d). Alignments can be scored in many different
ways with the typical objective of maximizing the number of

https://github.com/TurakhiaLab/TALCO

matching characters in the alignment while minimizing the
number of mismatches and gaps that need to be inserted in
each sequence to achieve the alignment. One particular instance
of the scoring strategy involves minimizing the Levenshtein
distance [35], in which each mismatch or gap in the alignment
increments the distance by one. Gotoh’s affine gap [36] strategy
assigns different scores for the opening and extension of gaps,
providing a more accurate model for how gaps appear in
biological sequences.

Needleman-Wunsch and Smith-Waterman algorithms:
These are classical approaches to optimally solve the pairwise
sequence alignment problem and are based on dynamic
programming (DP) algorithms. The Needleman-Wunsch al-
gorithm [20] solves the global sequence alignment problem,
as defined above, while allowing the flexibility to reward
each combination of matching or mismatching characters in
the alphabet differently in the alignment score. The Smith-
Waterman algorithm [19] is designed to find local sequence
alignments, i.e., substrings of the input sequences that align
with the maximum score. Both algorithms compute a traceback
matrix of size m×n, where each cell of the matrix points to
one of its adjacent cells (up, left, or diagonal) indicating the
direction to arrive at that cell with the maximum score (Fig-
ure 2a). The optimal alignment(s) between the two sequences is
determined by following a path(s) of traceback pointers in this
matrix. Both algorithms have a time and space complexity of
O(mn). Affine gap scoring increases the memory requirement
for storing traceback pointers in these algorithms by a constant
factor.

WFA algorithm: In 1986, Eugene Myers proposed the
O(nd) algorithm that produces optimal global alignments
based on Levenshtein distance [37]. The algorithm works by
computing optimal partial alignments of increasing Levenshtein
distance until it finds a global alignment between the two
input sequences. The algorithm requires O(nd) time and O(d2)
memory, where n is the length of the shorter sequence and d is
the optimal Levenshtein distance between the sequences. The
algorithm uses a triangular-shaped traceback matrix (Figure 2c-
d), whose columns correspond to the diagonals of the DP matrix
and rows correspond to the alignment score (i.e., the number
of mismatches and gaps in the partial alignment up to that
row). Each cell stores a traceback pointer with three possible
configurations, pointing to the same, adjacent-left, or adjacent-
right cell in one row above that cell, using which the optimal
alignment can be reconstructed. WFA [38] is a recent extension
of the O(nd) algorithm to support affine gaps and generalized
distance measures. Here too, supporting affine-gap penalties
result in a constant-fold increase in the memory requirement.
When the differences between the two sequences are small,
Myers’ O(nd) and WFA algorithms are very fast and memory-
efficient in comparison to classical DP approaches. However,
the performance can also be worse when the two sequences
are long (and hence, have more differences) or dissimilar, or
when scoring parameters span a large range of values [39].
BiWFA [40] is a recent extension of WFA that trades runtime
for memory efficiency, but it still requires up to hundreds of

megabytes for long and noisy alignments.
Banding techniques: Banding techniques improve the speed

and memory requirements of the alignment algorithms by
heuristically pruning the search space. X-Drop [41] has been
a popular banding technique for classical DP algorithms since
its incorporation into the BLAST [34] algorithm and virtually
all long-read and whole-genome aligners use some form of
this banding technique [5], [33]. Briefly, the X-Drop algorithm
dynamically prunes out cells at the edges of each anti-diagonal
as it computes them if they fall below the best score seen
so far by more than a user-defined parameter, X, as shown
in Figure 2e. The WFA software library also has a different
variation of this heuristic, WFA-Adapt (WFAA) [38], which
drops the outer columns of the triangular matrix which are
lagging much behind the furthest in terms of the number of
bases covered in the alignment.

Tiling techniques: Though banding techniques reduce the
memory requirement of alignment algorithms, it still usually
grows linearly to the lengths of the sequences being aligned.
This limits the parallelism as well as the maximum alignment
length that can be supported in custom hardware relying on
the on-chip memory to achieve massive acceleration. To make
alignment more amenable to hardware acceleration, a tiling
heuristic, called GACT, was introduced in Darwin [7] and later
adapted in other accelerators [8]–[10], [22]–[25]. Briefly, this
technique extends an alignment using a series of overlapping
tiles, with tile size and overlap determined by fixed parameters,
T and O, as shown in Figure 2f. It required only O(T 2)
memory, corresponding to a single tile of the alignment and
independent of the lengths of sequences being aligned, to
be maintained on-chip (the traceback path was stored off-
chip in O(n) memory), allowing arbitrary long alignments
to be accelerated in hardware with high speedup. In Darwin-
WGA [8], the authors introduced GACT-X, which incorporated
X-Drop banding in GACT. Even though this can give good
practical results, the GACT-X heuristic is not guaranteed to
provide equivalent alignments to X-Drop and the performance
is sensitive to properties of the input sequences, and the choice
of T and O. So far, tiling has not been explored for the WFA
algorithm.

III. TALCO ALGORITHM DESCRIPTION

Motivation: Figure 3 provides motivation for the TALCO
algorithm. The figure shows the traceback pointer matrix for
two sequences, aligned using the Needleman-Wunsch algorithm
with X-Drop banding. Traceback pointers reachable from a
starting wavefront (i.e., an anti-diagonal in the matrix) marked
with a dotted line are highlighted in red. As the figure shows,
alignment paths starting from different cells on the wavefront
merge at a single cell in the matrix, highlighted with a blue
circle, and then share a common path to the origin (i.e., the top-
left cell). Such convergence of traceback pointers from nearby
cells (which motivates our definition of a “frontier” below) is
a prevalent characteristic observable in many alignments and
closely resembles the “rank convergence” property of dynamic
programming algorithms found in a previous paper [42]. In

Fig. 2: Traceback matrices and alignments obtained from Needleman-Wunsch and WFA alignment algorithms, for example,
input sequences R=‘AGCCGTG’ and Q=‘ATGCGG’. (a) Traceback matrix for the Needleman-Wunsch algorithm with scoring
parameters: {match=2, mismatch=-1, gap=-1}. Each cell stores a single traceback pointer pointing up, left, or diagonal,
with the traceback path starting from the pink cell highlighted in red. (b) Alignment corresponding to the traceback path in
(a). (c) Traceback matrix for the WFA algorithm with scoring parameters: {mismatch=1, gap=1}, with the traceback path
starting from the pink cell highlighted in red. (d) Alignment corresponding to the traceback path in (c). (e) Traceback matrix
for the X-Drop algorithm (adaptive banding) with scoring parameters same as (a) and {X=3}. Pruned cells are highlighted in
gray, and the traceback path starting from the pink cell is highlighted in red. (f) Illustration of the tiling heuristic (GACT) with
parameters: {T=3, O=1}. Overlapping cells between two consecutive tiles are highlighted in yellow, and the traceback path
starting from the pink cell is highlighted in red.

Fig. 3: Illustration of the convergence of traceback pointers
using an example traceback matrix for Needleman-Wunsch
algorithm with X-Drop banding.

that paper, the authors postulated that rank convergence is
frequently observed because the score dependence between
two cells in the DP matrix weakens as their distance increases,
which we observe is also the case with traceback pointers.
However, we note here that while TALCO takes advantage of
the traceback convergence property to improve the speed of
tiling, it is not a necessary condition for the algorithm to work
or provide optimal results (under banding constraints).

Frontiers and markers: The TALCO algorithm defines
two terms, frontier and marker, as follows. The ith frontier,
fi, is defined as a set of cells in the traceback matrix such
that the scores and traceback pointers for cells in fi depend
only on the previous frontier, fi−1. Hence, if j < k, f j will
be computed before fk in the alignment process. There could
be many ways to define a frontier in an alignment algorithm.
When all frontiers are combined, they cover the entire traceback
matrix and adjacent frontiers can have overlapping cells. For
example, in the X-Drop algorithm, the jth frontier can be
defined as the set of cells in two adjacent wavefronts, Wj and
Wj+1, as shown in Figure 4b. Since a traceback pointer in
Wj+2 can only point to Wj+1 (in case of up or left pointers)
or Wj (in case of diagonal pointers) wavefronts, any traceback
path from fk is guaranteed to pass through f j, if j < k. For the
WFAA algorithm, the frontier definition depends on the choice
of scoring parameters. When Levenshtein distance scoring is

used, where every mismatch and gap has the same penalty of
one, a frontier can be defined as a single row in the triangular
traceback matrix. This is because, each row in the matrix
corresponds to the alignment score (number of mismatches
and gaps) in the partial alignment up to that row, and any
alignment with a score of s+ 1 or higher would contain a
partial alignment of score s. With affine gap scoring, for e.g.,
with a penalty of 1 for extending gaps and an extra penalty of
1 for opening gaps, the frontier needs two consecutive rows
of the traceback matrix, as alignment from row s must pass
through row s−1 or s−2. Therefore, for the WFAA algorithm
with the aforementioned scoring parameters, the jth frontier
can be defined as the set of cells in two adjacent wavefronts,
Wj and Wj+1, as shown in Figure 5b. A marker is a special
frontier (fM) in the TALCO algorithm that is used to separate
the two phases of the TALCO algorithm.

TALCO Algorithm: TALCO takes advantage of the property
that if optimal traceback paths starting from every cell on a
frontier fY converge to a single cell Ctb, then since optimal
traceback paths starting from later frontiers would pass through
some cell on fY , they would also pass through Ctb. Algorithm 1
provides the pseudocode for the TALCO algorithm which
exploits this insight to tile an arbitrary alignment algorithm,
Align, which has a scoring function called AlignScore and a
traceback function called AlignTraceback.

TALCO, within each tile, uses AlignScore to compute the
scores (Scurr) and traceback pointers (Ptr j) for each cell in
the current frontier (f j). It does this using: a) the scores from
the previous frontier (Sprev), and b) the corresponding bases in
R and Q (line 9). AlignScore also returns the coordinates of
the last cell, Clast , which depends on whether it is a global or
local alignment algorithm. For example, for a global alignment
function, such as WFA-Adapt, Clast will correspond to the last
cell (m,n) in the dynamic programming matrix, and for a local
alignment function, such as X-Drop, Clast will correspond to
the maximum scoring cell found so far. At the end of each
tile (line 37), the current traceback path is extended by up to
M frontiers, where M is fixed, using a) the AlignTraceback

Fig. 4: An illustration of TALCO-XDrop (TALCO applied to
the X-Drop algorithm). (a) Traceback pointer matrix in the
TALCO-XDrop algorithm with cells colored by the phases in
which they were computed (cells outside the X-Drop bands are
in white) (b) An illustration of traceback pointer redirection in
TALCO-XDrop. The cell on wavefront Wj+1 is redirected to
the marker cell on its traceback path by the cell on wavefront
Wj that it would otherwise point to. (c) At convergence, all
cells on a frontier (two consecutive wavefronts) would point
to the same cell on the marker.

function on T BTile, b) the traceback matrix for that tile, and
c) Ctb, the starting cell for the traceback.

Each tile in TALCO has two phases. In phase 1, TALCO
stores traceback pointers for each cell in the current frontier,
Ptr f j , as a row in T BTile matrix (line 15). It does this for a
total of M frontiers, after which it reaches the marker in the
current tile and begins phase 2 (line 20).

In phase 2, TALCO computes convergence pointers,
ConvPtrcurr, for each cell in the current frontier. A convergence
pointer indicates the cell on the marker that the traceback path
from the corresponding cell on the frontier would lead to. This
is done recursively for each cell on the current frontier using
a redirect function (line 21), that stores the same pointer of
the cell on the previous frontier that the current cell traceback
pointer points to. Figures 4 and 5 show how the redirection of
pointers works for X-Drop and WFAA algorithms. Convergence
pointers for only two frontiers, current and previous, need to
be maintained in this phase. If all convergence pointers in the
current frontier point to the same marker cell (we referred to
this frontier earlier as fY), it can be used to determine the
starting cell for traceback in the current tile, Ctb, and terminate
phase 2 (lines 25). Figures 4 and 5 illustrate this for X-Drop
and WFAA algorithms. This method of using the convergence
of traceback pointers instead of a greedy approach to determine
the starting cell Ctb for traceback in a tile is what differentiates
TALCO from previous tiling approaches.

Memory requirement: If Bmax is the maximum number of
cells in a frontier, then at most M×Bmax pointers and Bmax
scores in Sprev and Scurr will need to be maintained during phase
1 of TALCO (Algorithm 1). In phase 2, Bmax pointers will
be maintained for frontiers ConvPtrprev and ConvPtrcurr, with

Algorithm 1 Tiling Alignment using the TALCO Algorithm
1: i← 0
2: tb← [] ▷ Initialize empty traceback path
3: Smarker← AlignInit()
4: while True do ▷ Multiple Tiles, outer loop
5: j← i
6: Sprev← Smarker
7: T BTile← 2-D matrix with M rows
8: while True do ▷ Within Each Tile
9: (Scurr,Ptr f j ,Clast)← AlignScore(Sprev, f j,R f j ,Q f j ,Sprev)

10: if j− i = M−1 then ▷ Reached Marker
11: ConvPtrprev← A unique id for each cell in Scurr
12: Smarker← Scurr
13: end if
14: if j− i < M then ▷ Phase 1
15: T BTile[j− i]← Ptr f j
16: if f j has reached the end of the alignment then
17: Ctb←Clast
18: break
19: end if
20: else ▷ Phase 2
21: ConvPtrcurr← redirect(Ptr j,ConvPtrprev)
22: if Clast was updated in the current tile then
23: ConvPtrlast ←ConvPtrcurr[Clast]
24: end if
25: if all pointers in ConvPtrcurr point to a marker cell

Cx then
26: Ctb← Cx
27: break
28: else if f j has reached the end of the alignment then
29: Ctb←ConvPtrlast
30: break
31: end if
32: ConvPtrprev←ConvPtrcurr
33: end if
34: j← j+1
35: Sprev← Scurr
36: end while
37: tb.append(AlignTraceback(T BTile,Ctb))
38: i← i+M
39: if fi has reached the end of the alignment then
40: break
41: end if
42: end while
43: return tb ▷ Return traceback path

each pointer requiring log2(Bmax) bits for pointing to a unique
cell on the marker. Hence, the maximum memory required for a
single tile in TALCO is O(M×Bmax+ log2(Bmax)×Bmax). For
a local extension algorithm, additional log2(Bmax) memory bits
are required to store the score and convergence pointer of the
maximum scoring cell. Therefore, the memory requirement for
each tile in TALCO depends only on M and Bmax, irrespective
of the lengths of input sequences. This also allows a memory-
constrained accelerator to fall back to the host when a frontier
size exceeds the maximum size it can handle to guarantee
equivalent alignment results with and without tiling, a feature
that is missing in the previous tiling approaches.

Proof of equivalence: TALCO algorithm (Algorithm 1) is
guaranteed to produce alignments identical to Align, when
Align takes full input sequences and does not perform tiling.

Fig. 5: An illustration of TALCO-WFAA (TALCO applied to
the WFA-Adapt algorithm). (a) Traceback pointer matrix in the
TALCO-WFAA algorithm with cells colored by the phases in
which they were computed (cells outside the WFAA bands are
in white). (b) An illustration of traceback pointer redirection in
TALCO-WFAA. The cell on wavefront Wj+1 is redirected to
the marker cell on its traceback path by the cell on wavefront
Wj that it would otherwise point to. (c) At convergence, all
cells on a frontier (two consecutive rows) would point to the
same cell on the marker.

We only provide intuitive proof for this here due to space
constraints. Since TALCO uses the marker scores from the
current tile to correctly initialize the next tile (line 6), the scores
and traceback pointers in TALCO and Align will always match
for each cell. The partial alignment produced by TALCO in
the current tile (line 37) is also guaranteed to be present in
Align without tiling. This is because the TALCO algorithm
guarantees that Align traceback also passes through Ctb in each
tile. For example, consider the case in which all convergence
pointers at the current frontier, f j, point to a single cell, Cx,
on the marker (line 25). Hence, if traceback Align starts from
a cell on a frontier fk, which occurs after f j, the traceback is
guaranteed to include Cx, which is the value assigned to Ctb in
line 26. This is because since k > j, traceback from every cell
on fk passes through some cell f j, which passes through Cx.
Remaining parts of the Algorithm set the value of Ctb correctly
for cases in which convergence does not take place before the
end of the alignment is reached (lines 28-29) or when Align
algorithm is local and the maximum scoring cell starts before
the converging frontier (lines 22-23).

IV. TALCO ACCELERATOR DESIGN

Figure 6 provides an overview of accelerator design for
TALCO-Align (TALCO applied to tile an algorithm, Align).
The accelerator is implemented as a co-processor. Host CPU
issues alignment tasks along with the addresses of sequence
pairs to be aligned to parallel TALCO-Align units and receives
the output. Host CPU also performs alignments that fail because
of frontier lengths exceeding the hardware constraints. The
overhead for failed alignments corresponds to the alignment
speed of the software. Next, we describe the TALCO accelerator
hardware design for tiling X-Drop and WFA-Adapt algorithms.

Fig. 6: Overview of the interconnection between the host
CPU and TALCO-Align co-processor, where Align denotes
the sequence alignment algorithm that TALCO is applied to.
In this paper, we discuss Align for X-Drop and WFA-Adapt.

Fig. 7: TALCO-XDrop hardware design. (a) Systolic architec-
ture of TALCO-XDrop array with NPE=4. (b) Query blocking
applied to an example dynamic programming (DP) matrix
whose cells are colored corresponding to the PE computing
them (uncomputed cells outside the X-Drop bands are in white).

TALCO-XDrop Accelerator Design: The TALCO-XDrop
accelerator closely resembles GACT-X [8] but requires addi-
tional elements to incorporate the second phase of the TALCO
algorithm shown within the gray box in Figure 7a. The TALCO-
XDrop accelerator aligns two sequences, a reference (R) and a
query (Q), based on the X-Drop algorithm with TALCO tiling.
Input sequences are ASCII encoded but stored using 3 bits per
base-pair (bp) in SRAM for an extended DNA alphabet σ ∈
{A, C, G, T, N}, where N is any ambiguous character. Tiling
parameters M, the number of wavefronts from the beginning
of a tile to the marker, and Bmax, the maximum number of
cells in a wavefront, are fixed at design time. If any wavefront
exceeds Bmax cells, the accelerator falls back to the CPU with
an invalid flag in the corresponding output to perform the
alignment. Alignment scoring parameters can be passed to
hardware as input, and include the substitution matrix (W), gap
open penalty (o), and gap extend penalty (e).

As shown in Figure 7, the TALCO-XDrop accelerator
calculates the scores of the DP matrix using a systolic array of
processing elements (PEs), exploiting the available wavefront
parallelism along a stripe of NPE rows, similar to GACT-
X [8]. Figure 7 shows a TALCO-XDrop array with NPE = 4.
During phase one, each PE computes the scores according to
the Needleman-Wunsch [20] scoring equations with an affine
gap [36] penalty (Eqs. (1) to (3)). The final score is calculated
using Eq. (3) which determines the direction pointer. Each
pointer has 4 bits: 2 bits to encode Eq. (3) and 1 bit each
for Eq. (1) and Eq. (2). Further, a running maximum score
(Hmax) is maintained in a systolic fashion. A stripe calculation
terminates when scores of all cells along a column drop below
(Hmax −X), where X is an input parameter of the X-Drop
algorithm as shown as the uncomputed region in Figure 7. H
and D values for the last row of a stripe are stored in a FIFO,

as shown in Figure 7 since they are required for computing
the next stripe. Depending upon whether the value in the last
row of the previous stripe was calculated or not, values are
read from FIFO, or initialized to −∞. Each PE has a dedicated
SRAM bank to store traceback pointers and additional SRAMs
are used to store the start and end positions of each stripe, as
they vary based on the X value, and are during the traceback.

Ii, j = max
{

Hi, j−1−o, Ii, j−1− e
}

(1)

Di, j = max
{

Hi−1, j−o,Di−1, j− e
}

(2)

Hi, j = max
{

Ii, j,Di, j,Hi−1, j−1 +W (Ri,Q j)
}

(3)

Traceback pointers are only stored during phase 1 of TALCO
(Algorithm 1). When the TALCO algorithm moves to phase 2
(Algorithm 1), each PE uses pointer redirection to calculate
the cell on the marker to which its traceback path would lead,
as described in Section III and shown in Figure 5b. A single
register H ′max keeps track of the maximum score seen so far. A
reduction tree is used to determine if all NPE pointers computed
by NPE PEs in each cycle for the subset of the wavefront in
the current stripe have converged to the same cell. If they have
converged, the index of the converged cell on the marker is
stored in a separate SRAM for convergence pointers (Figure 7)
addressed by the current wavefront index, otherwise, −1 is
stored. Once pointers for all subsets of a frontier are obtained,
appended values determine convergence. If all the values are
the same, convergence is detected, otherwise the algorithm
continues.

Once the convergence is detected on a frontier, score
calculation is performed till H ′max > Hmax. If the criteria match,
traceback logic starts from the converged point, otherwise, the
cell with Hmax serves as the starting point. The traceback logic
traverses each step depending on the pointers and start/stop
values stored in the SRAM. The traceback path of the current
tile is sent to the software to reconstruct the alignment.

TALCO-WFAA Accelerator Design: Similar to TALCO-
XDrop, TALCO-WFAA Array hardware design accelerates the
alignment of two sequences, a reference (R) and a query (Q)
using the TALCO-WFAA algorithm explained in Section III.
Input sequences are again ASCII encoded and stored using
3 bits in SRAM for an extended DNA alphabet σ ∈{A, C,
G, T, N}. TALCO-WFAA accelerator computes the alignment
by iteratively performing extend, reduce, and compute steps
described in WFA-Adapt [38]. Here too, tiling parameters
M, the number of wavefronts from the beginning of a tile
to the marker, and Bmax, the maximum number of cells in a
wavefront, are fixed at design time. If any row exceeds Bmax
cells, the accelerator falls back to the CPU with an invalid
flag in the corresponding output to perform the alignment.
In addition, WFA-Adapt alignment parameters are decided
at design time as they determine the traceback pointer size
and cell dependencies [43]. In our case, we set mismatch (x),
gap open (o), and gap extend (e) penalties to 1, 2, and 1,
respectively, so that the frontier consists of two rows in the
traceback matrix, as described in Section III.

Figure 8 shows an array of the TALCO-WFAA accelerator
which exploits parallelism using Next extend and Ncomp compute
modules. Due to WFA-Adapt’s irregular access pattern, we
dedicate a pair of SRAM to store query and reference sequences
for every extend and compute block. 1 During the first
phase of TALCO-WFAA, each extend module receives a cell
offset and a K position in the triangular matrix. On the start
signal, extend compares bases of R and Q from positions ri
and qi respectively, calculated using the cell offset and K,
until a mismatch is found, and returns the new offset. To
exploit parallelism, multiple consecutive bases of R and Q
are compared simultaneously and a reduction tree is used
to compute the offset of the earliest mismatch. Once a new
offset for all the cells, within kmax and kmin, corresponding to
a score in the triangular matrix is computed, reduce module
is sent a start signal. Reduce logic performs pruning of cells
at the boundaries of each new row whose new offsets are
left far behind based on the WFA-Adapt heuristic [38]. 2
Another reduction tree is used to determine distant cells and
generate k′max and k′min, stored in dedicated SRAMs as shown
in Figure 8. 3 Four arrays of registers, one for each Hs−1,
Is−1, Ds−1, and Hs−2 rows in the triangular matrix are used
to store cell offsets of a frontier. 4 Next, compute module
finds the farthest-reaching cell offset for a cell based on the
previously computed frontier using Eqs. (4) to (7) of the WFA
algorithm [38]. 5 Compute further calculates the traceback
pointers and stores them in SRAM and the iteration continues.

Is,K = max
{

Ms−o,K−1 +1, Is−e,K−1 +1
}

(4)

Ds,K = max
{

Ms−o,K+1,Ds−e,K+1
}

(5)

Xs,K = max
{

Is,K ,Ds,K ,Ms−x,K +1
}

(6)
Hs,K = Xs,K +LCP(Q[Xs,K−K,n−1],R[Xs,K ,m−1] (7)

In the second phase, extend and reduce modules perform
the conventional tasks however, compute module, instead of
traceback pointers, convergence pointers are determined and
stored in registers Hs−1, Is−1, Ds−1, and Hs−2. No further
traceback pointer SRAM memory utilization occurs. 6 A
reduction tree is used to detect convergence in a frontier. 7 If
converged, traceback logic generates the compact CIGAR one
character at a time using the pointers and kmax, and kmin values
stored in the SRAM. If the end of sequences is reached before
convergence, traceback starts from (m,n) where m and n are
the lengths of reference and query sequences, respectively. The
result is generated as a compact CIGAR and later unpacked
into full CIGAR using CPU threads.

TALCO-WFAA accelerator design takes some inspiration
from WFA-FPGA design [43]. Apart from the extra logic
to incorporate TALCO’s phase 2, TALCO-WFAA and WFA-
FPGA have two additional differences in their implementation.
First, WFA-FPGA accesses SRAM to calculate the next
wavefront offsets from the previous, while TALCO-WFAA
uses dedicated registers (in 3) to reduce memory accesses
that favor hardware acceleration (this works better on ASICs,
but WFA-FPGA design is more FPGA-friendly). Furthermore,

Fig. 8: TALCO-WFAA hardware design

WFA-FPGA has parallel extend units but a single compute unit
is used, however, TALCO-WFAA exploits parallelism with
both extend (in 1) and compute (in 4) units.

V. EXPERIMENTAL METHODOLOGY

Dataset: To generate sequence pairs for evaluating alignment
throughput and accuracy at different alignment lengths and error
rates, we started with the human genome assembly, GRCh38,
only using the 1–22, X, and Y chromosomes. Using this
as the reference, we simulated 32 sets of long reads using
PBSIM2 [44] with lengths {10, 20, 50, and 100} Kbp and error
rates {1%, 5%, 15%, and 30%}, resembling error profiles of
Pacific Biosciences (PacBio) and Oxford Nanopore Technology
(ONT) (Table I). Each set included 20,000 reads. PBSIM2
provided the subset of the reference genome aligning with
each read, and the corresponding alignment, as output. Default
settings of the continuous long read (CLR) [45] model were
used in PBSIM2 to generate PacBio reads and tuned to model
ONT reads [46].

Read Type PacBio ONT
Substitution

error 0.06% 0.28% 0.83% 1.65% 0.39% 1.97% 5.91% 11.82%

Insertion
error 0.46% 2.28% 6.83% 13.65% 0.25% 1.21% 3.64% 7.27%

Deletion
error 0.48% 2.45% 7.35% 14.70% 0.36% 1.82% 5.45% 10.91%

Total error 1% 5% 15% 30% 1% 5% 15% 30%

TABLE I: Error profile of the read sets

Baseline Methods: We used Libgaba [47], WFA-Adapt [38],
BiWFA [40], Edlib [48], and Scrooge [10] as our software
(CPU) baselines. Specifically, we compared the alignment
throughput, memory footprint, and power consumption of
TALCO-XDrop with Libgaba (semi-global alignment with
X-Drop termination), and TALCO-WFAA with the WFA-
Adapt algorithm in WFA2-lib, since Libgaba (WFA-Adapt)
algorithm is equivalent to TALCO-XDrop (TALCO-WFAA),
whereas other baselines are included for alignment throughput
comparison only. We evaluate BiWFA v2.3 with default
settings and affine gap scoring scheme, and Edlib v1.2.7
with default settings.

All CPU analyses were performed on a 64-core Intel Xeon
Silver 4216 processor, running at 2.1 GHz with 384 GB
DDR4 RAM clocked at 3.2 GHz. We demonstrate the benefits
of TALCO using CPU implementations of TALCO-XDrop

Fig. 9: Illustration of flexibility in the alignment scoring
function of all evaluated tools, including TALCO. Tools with
greater scoring flexibility tend to exhibit lower speed and
memory efficiency but solve a more generalized formulation
of the alignment problem with broader bioinformatic utility.

and TALCO-WFAA, implemented in C++ with multithreading
using OpenMP [49] and compiled using g++-10.3. For a
fair comparison, all baselines were configured to obtain the
maximum throughput without affecting the alignment score
obtained from the recommended default settings. Scoring and
other input parameters for TALCO-XDrop and TALCO-WFAA
were tuned to match the baseline tools. We implemented
a software version of TALCO-XDrop from scratch in C++,
and for TALCO-WFAA, we modified the unidirectional align
function of the WFA library (adopted in WFA-Adapt) to use the
TALCO tiling strategy. We did this by modifying the compute
function to forward the convergence pointers and check for
convergence, while the reduce and extend function invocations
remained the same. We measured each tool’s processor and
DRAM power utilization using BenchExec [50]. The peak
memory utilization of each process was tracked using the
VmPeak utility in Linux.

We further compared the alignment throughput of TALCO
accelerators against the state-of-the-art GPU and ASIC aligners
based on the code and RTL availability. We used the GPU
implementations of the GACT [51] and Scrooge [10] algorithms
for GPU baselines. We performed all GPU analyses on NVIDIA
RTX A6000 GPU [52] and used NVIDIA Nsight [53] to
collect the kernel runtime. For the ASIC baseline, we used the
GACT-X RTL code available from Darwin-WGA [8]. GACT-
X implements a tiling heuristic on the X-Drop algorithm,
making it suitable for a direct comparison with TALCO-XDrop.
We synthesized and executed GACT-X as described below to
estimate its performance.

Figure 9 highlights the relative flexibility of different methods
in their scoring function, as it tends to impact their relative
speed and memory performance.

ASIC Area, Power, and Throughput Analysis: We used
SystemVerilog to implement the RTL design of TALCO-XDrop
and TALCO-WFAA accelerators described in Section IV. We
used OpenROAD [54], with OpenRAM [55] as the memory
compiler, to perform ASIC analysis of our designs and GACT-
X through place-and-route on a FreePDK 45nm process
technology [56] at the worst-case process-voltage-temperature
(PVT) corner. Each of our accelerators was provisioned with
the required number of DDR4-2400 channels, and DRAM-

Fig. 10: Memory footprint of a single-thread CPU execution
of Libgaba and TALCO-XDrop for aligning PacBio and ONT
reads of different lengths with 15% error rate.

Power (version 4) [57] was used to estimate the DRAM
cycles and power. ASIC alignment throughput for TALCO-
XDrop, TALCO-WFAA, and GACT-X was estimated using the
maximum ASIC frequency reported from OpenROAD analysis
and cycle counts required to align each pair of sequences on
individual arrays derived from FPGA implementations of the
accelerators (see below).

FPGA Analysis: To evaluate the achievable performance
of TALCO-XDrop and TALCO-WFAA accelerators on FP-
GAs, we synthesized them on Xilinx Virtex UltraScale Plus
xcvu9p-flgb2104-2-i FPGA [58] alongside the AWS
shell [59] for deployment on the Amazon EC2 FPGA instances
(f1.2xlarge). We were able to map 32 arrays of TALCO-XDrop,
each with 16 PEs, and 16 arrays of TALCO-WFAA, each
with 16 extend and 16 compute modules. The operating clock
frequency was 115MHz for TALCO-XDrop and 166MHz
for TALCO-WFAA. We also synthesized a single array of
GACT-X with 32 PEs on Xilinx Virtex UltraScale Plus
xcvu9p-flgb2104-2-i FPGA [58] with an operating
frequency of 150MHz to derive the cycle counts to align pairs
of sequences.

VI. RESULTS AND DISCUSSION

Software Memory Footprint with TALCO: The TALCO
tiling strategy can be used to improve the memory footprint
of software aligners without affecting the alignment results.
To quantify the benefits, we compared the memory footprints
of software implementations of TALCO-XDrop and TALCO-
WFAA with Libgaba and WFA-Adapt, respectively, for aligning
reads of different lengths. Figures 10 and 11 show these results
for the single-threaded execution of these algorithms. Since
baseline algorithms use banding but do not incorporate tiling,
their memory footprint increases linearly with read length.
For Libgaba (WFAA), the memory footprint increased by 7×
(14.5×), from 33 MB (57 MB) to 260 MB (830 MB) as PacBio
read lengths were increased from 10 Kbp to 100 Kbp, whereas
the memory footprint of TALCO-XDrop (TALCO-WFAA)
increased by only 1.1× (1.8×), from 6.2 MB (11 MB) to 6.54
MB (19.7 MB). A small increase in the memory footprint of
the TALCO algorithms can be attributed to the memory needed
to store sequences and their alignment in memory.

Because the memory footprint of the WFA-Adapt is also
dependent on the rate of differences between the sequences

Fig. 11: Memory footprint of a single-thread CPU execution
of WFA-Adapt, BiWFA, and TALCO-WFAA for PacBio and
ONT reads of different lengths with 15% error rate.

Fig. 12: Memory footprint of a single-thread CPU execution of
WFA-Adapt, BiWFA, and TALCO-WFAA for 50Kbp PacBio
and ONT reads at error rates.

being aligned, we further evaluate TALCO-WFAA and WFA-
Adapt for aligning sequences of fixed length at different error
rates in Figure 12. As expected, WFA-Adapt had a roughly
15× higher memory footprint when the error rate of reads
was increased from 1% to 30%, whereas TALCO-WFAA had
a lower, and roughly constant memory footprint, providing
10–30× and 12–64× improvement for PacBio and ONT reads,
respectively (Figure 12). We also found that while BiWFA
indeed improves the memory footprint of WFA and WFA-
Adapt, its footprint is also large (100MB at 30% error rate) and
increases linearly with the number of differences (and therefore,
with both alignment length and error rate) in the sequences
being aligned, as shown in Figure 11 and 12. Therefore,
TALCO-WFAA provided up to 5.3× improvement in memory
footprint over BiWFA as read lengths were increased from
10 Kbp to 100 Kbp (Figure 11). Furthermore, the memory
footprint advantage of TALCO-WFAA over BiWFA in the
software also increases with error rates, from 2× to 8× as
the error rate increases from 1% to 30% (Figure 12). Over
Edlib, TALCO-WFAA provides 1.08-1.8× and 1.18-1.9×
improvement in memory footprint for PacBio and ONT reads,
respectively, with memory savings increasing with read lengths
(Figure 11). Edlib’s memory performance is attributable to its
more restrictive scoring policy (based on Levenshtein distance,
Figure 9) that has limited bioinformatic utility. Moreover,
TALCO can be used to tile Edlib’s algorithm as well (see
Section VII).

Overall, TALCO is effective in reducing the memory
footprint of existing algorithms, and the benefit increases with
the increase in read lengths. This saving in memory footprint
per thread from TALCO can also be exploited in software for

higher thread-level parallelism.
Speed of Convergence of Traceback Pointers: Because

frontiers in phase 2 of TALCO incur redundant computations
since they do not contribute to the partial alignment of the
tile and are recomputed in the subsequent tile(s) (resulting in
overlapping tiles). To evaluate the speed of convergence of
traceback paths, we measured the efficiency of TALCO-XDrop
and TALCO-WFAA as the average percentage of frontiers that
were computed in a tile in phase 1 of TALCO for 50Kbp reads
at different error rates. It is desired that a quick convergence
occurs for higher efficiency as it indicates less redundant
computation in phase 2. We observed that traceback pointers
indeed converged fast, with average efficiencies of 95–97%
at low error rates (1-5%) and over 85% in the worst case.
This is an improvement over previous tiling approaches since
they conservatively set tile overlap for all alignments, typically
resulting in 75% or lower efficiency [7], [8], [10].

Accelerator Component Configuration Area
(mm2)

Power
(W)

TALCO-
XDrop

Logic 32x(32PE) 4.60 12.8
SRAM 32x(32x4KB + 1KB) 53.7 2.44

DDR4-2400 4x32GB - 3.79
Total 58.3 19.0

TALCO-
WFAA

Logic 16x(16x{Extend,Compute}) 17.2 28.1
SRAM 16x(32KB + 16x2KB + 1KB) 12.8 1.10

DDR4-2400 4x32GB - 3.79
Total 30.0 32.9

TABLE II: ASIC analysis of TALCO-XDrop and TALCO-
WFAA accelerator providing area and power breakdown of
the individual components. The critical path delay of TALCO-
XDrop and TALCO-WFAA was found to be 2.5ns and 1.8ns,
respectively.

ASIC Area, Power, and Frequency Analysis: Table II
provides the area and power breakdown for each component
of the TALCO-XDrop and TALCO-WFAA accelerators based
on our RTL implementations.

For the TALCO-XDrop accelerator, we allowed storing
512KB wavefronts (equivalent to 512 frontiers) in a single
tile in each TALCO-XDrop array as it attained the maximum
throughput/watt for all the read types in our experiments. Each
array was provisioned with 128KB of memory for tiling. An
additional 1KB memory was provisioned per array for storing
convergence pointers. We synthesized 32 TALCO-XDrop
arrays, each with 32 PEs, at 400MHz maximum operating
frequency, requiring an area of 58.3mm2 and consuming 19W
of power, including the SRAM and DRAM components, as
shown in Table II.

Similarly, we synthesized 16 TALCO-WFAA arrays for
ASIC analysis and found a total area and power requirement
of 30mm2 and 32.9W, respectively, for a maximum operating
frequency of 556MHz (Table II). We configured the maximum
wavefront length = 128 (corresponding to 128 frontiers) for
TALCO-WFAA, since we found in our experiments that all
wavefronts have kmax− kmin < 90 for all the read types, for
chosen scoring parameters.

Fig. 13: Comparison of throughput/watt for ASIC and software
implementation of TALCO-XDrop compared to the Libgaba
algorithm executing on 32 CPU threads as the baseline.

Fig. 14: Comparison of throughput/watt for ASIC and software
implementation of TALCO-WFAA compared to the WFA-
Adapt algorithm executing on 32 CPU threads as the baseline.

ASIC Performance Comparison with Baselines: Figure 13
compares the alignment throughput per watt of TALCO-
XDrop ASIC and software implementation for PacBio and
ONT datasets at different sequence lengths with the Libgaba
algorithm executing on 32 CPU threads used as the baseline.
We set X=100 since it provided the best alignment scores
for Libgaba on all reads in our dataset. TALCO-XDrop was
configured to the same X-drop value to produce alignments with
matching scores. As Figure 13 shows, TALCO-XDrop ASIC
(software) achieved roughly up to 1,900× (0.18×) and 1,800×
(0.20×) improvement in throughput per watt over Libgaba for
PacBio and ONT reads, respectively.

Similarly, Figure 14 compares the alignment throughput per
watt of TALCO-WFAA ASIC and software implementation for
PacBio and ONT datasets at different sequence lengths with
WFA-Adapt algorithm executing on 32 CPU threads used as
the baseline. We used WFdiff = 50 setting for WFA-Adapt
as it produced optimal alignment scores for all reads in our
dataset. TALCO-WFAA was tuned for the same Wdiff value
and scoring scheme to produce alignments with matching
scores. WFA-Adapt’s remaining settings were configured as
recommended by the WFA authors [38]. As Figure 14 shows,
TALCO-WFAA ASIC (software) achieved roughly up to 1200×
(0.4×) and 2000× (0.58×) improvement over WFA-Adapt for
PacBio and ONT reads, respectively.

Figure 16 compares the alignment throughput of TALCO-
XDrop and TALCO-WFAA ASIC implementation with all
baselines for PacBio and ONT datasets at different sequence
lengths with an error rate of 15%. These results should be
viewed in the context of Figure 9 since different tools offer
different flexibility in their alignment scoring function, which
tends to impact their relative speed and memory performance.

Fig. 15: Percentage of alignments with optimal scores produced
by TALCO-XDrop and previous tiling approaches, GACT,
GACT-X, and Scrooge, for aligning 50 Kbp PacBio and ONT
reads at different error rates. We used linear gap penalties for
this experiment to ensure fairness to Scrooge as it does not
support affine gap penalties.

Fig. 16: Comparison of throughput (alignments/sec) for ASIC
implementation of TALCO-XDrop and TALCO-WFAA com-
pared to the CPU, GPU, and ASIC implementation of baseline
tools for PacBio and ONT datasets with an error rate of 15%.

For a fair comparison, all baselines were configured to obtain
the maximum throughput without affecting the alignment
score obtained from the recommended default settings. For
example, after this tuning, we set GACT (Scrooge) parameters
{T,O}={320,120} ({W,O}={64,33}). We note that, unlike
TALCO, heuristic tiling approaches (GACT, GACT-X, and
Scrooge) did not produce optimal alignment scores in many
cases (Figure 15).

As Figure 16 shows, TALCO-XDrop accelerator achieved
the highest alignment throughput among all methods, providing
180×, 50×, and 1.1× improvement over CPU, GPU, and ASIC
baselines, respectively. Interestingly, TALCO-XDrop provided
1.1× speedup even over GACT-X, which implements a tiling
heuristic of X-Drop, while producing higher quality alignments.
This can be partially explained by the fact that nearly 37% of
cells in GACT-X are redundantly computed in the overlapping
regions of the tile, whereas TALCO has lesser redundancy on
average as it leverages the fast convergence of pointers.

TALCO-WFAA accelerator also achieved over 65× and
2.2× improvement over CPU and GPU baselines, respectively,
though it was found to be 7× (6.3×) slower than TALCO-
XDrop (GACT-X) ASIC for this dataset. However, when the
error rates are lower, TALCO-WFAA accelerator can provide
speedup over TALCO-XDrop (GACT-X). For example, for
the read dataset with 1% error rate, we found the TALCO-
WFAA accelerator to be 1.1× (1.2×) faster than TALCO-
XDrop (GACT-X).

FPGA performance: We could synthesize 32 (16) arrays
of TALCO-XDrop (TALCO-WFAA) each with 16 PEs (16
compute and 16 extend modules) along with AWS shell using
Vitis Unified Software Platform on Xilinx Virtex UltraScale
Plus (xcvu9p-flgb2104-2-i) FPGA, clocked at 119
MHz (166 MHz). This implementation of TALCO-XDrop
(TALCO-WFAA) provided a peak throughput of roughly
20,000 (6,000) alignments per second, 6.7× (3.4×) lower
than ASIC for ONT and PacBio 10Kbp reads with 15% error
rate. In other words, for long alignments, even a single FPGA
implementation using TALCO achieves 1-2 orders and 1 order
of magnitude improvement in alignment throughput over the
software baseline executing on 32 CPU threads and tiling-based
GPU baselines, respectively.

VII. RELATED WORK

Algorithms: Dynamic programming (DP) is an immensely
popular algorithmic paradigm in the field of bioinformatics.
TALCO is a tiling strategy that can be easily applied to the
many variants of the classical dynamic programming algorithms
for specific pairwise alignment that has been developed for
different bioinformatic applications over the years. For example,
minimap2 [5], a popular long read aligner, uses a variation of
X-drop banding strategy with a two-piece affine gap penalty
for scoring alignments, which requires 5 DP matrices, instead
of 3 in Gotoh. This alignment can be tiled using TALCO by
requiring convergence of traceback pointers on all five matrices
instead of just three in TALCO-XDrop presented in this paper.

It is also possible to extend TALCO to some exact pairwise
alignment formulations that use banding to improve the average
runtime of the search. For example, Ukkonen’s algorithm [60]
is guaranteed to behave equivalent to a classical dynamic
programming algorithm without any banding, but it internally
only considers cells within an exponentially increasing band
around the main diagonal, resulting in O(ns) average runtime,
where s is the Levenshtein distance between the sequences. This
algorithm was further improved in Myers’ BitVector algorithm
[61], which provided a constant factor improvement in runtime
by exploiting bit-level parallelism, and in Edlib [48], which
further added traceback support and new alignment options.
These algorithms provide large improvements relative to the
classical algorithms when the two sequences being aligned
are similar, but have a restrictive scoring scheme based on
Levenshtein distance.

Some other non-classical algorithms have also recently
gained traction for sequence alignment. These include A*PA
[62] and Astarix [63], which employ a form of A* algorithm
for finding exact global alignments. While these algorithms
are not based on Dynamic Programming, they store traceback
information, apply banding, and have a frontier (vertices of
the priority queue) that is not significantly different from
WFA. TALCO can therefore be used to optimally tile these
methods. Bitap [64], [65] is another algorithm that uses bit-
level parallelism to find the exact alignment of two sequences
that have k or fewer differences, where the differences are
expressed in terms of Levenshtein distance. GenASM [9]

extended the Bitap algorithm to support traceback and applied
a tiling strategy similar to the GACT algorithm to compute
long alignments. Similar to GACT, GenASM cannot guarantee
optimality even under banding. TALCO can be applied to
GenASM to tile alignments while guaranteeing optimal results
under banding constraints.

Dynamic Programming has also found applications in
bioinformatics far beyond pairwise sequence alignment. These
include multiple sequence alignment [66], [67], remote homol-
ogy search [68], phylogenetics [69], base-calling [70], variant
calling [71], and RNA secondary structure prediction [72].
Several of these algorithms can also be tiled with TALCO.
For example, CLUSTAL [66] and MUSCLE [67], among the
most cited bioinformatic tools, extend classical DP algorithms
with position-specific scoring to align multiple sequences.
HMMER [68] is a remote homology search tool that uses
the Viterbi algorithm on a Hidden Markov Model trained
on a multiple alignment of input sequences. Many emerging
applications, such as pangenomics [73], [74], utilize dynamic
programming for sequence-to-graph [74], [75], and partial-
order alignments [76]. The underlying computation structure
of many of these algorithms is quite similar to the classical
DP algorithms, with both matrix fill and traceback steps to
find the optimal alignment, making them amenable to tiling
based on the TALCO strategy.

Accelerators: There has been a recent surge in the de-
velopment of hardware accelerators for genomic workloads
utilizing GPUs [10], [24], [77]–[81], FPGAs/ASICs [7]–[10],
[22], [43], [82]–[100], and in-memory processing [101]–[111].
In particular, pairwise sequence alignment using dynamic
programming has been a key focus in many accelerators [7]–
[10], [24], [43], [77]–[79], [83]–[85], [87]–[99]. There has also
been significant emphasis on accelerating it in commercial
products, such as the FPGA accelerator developed by Illumina
and the inclusion of DPX instructions in NVIDIA’s latest
GPUs [112], [113]. Commercial ASIC accelerators could also
be warranted in the future due to the exponential growth of
genomic data [114]. Hardware accelerators have traditionally
encountered difficulties in maintaining the traceback pointers
due to the fact that the memory requirements for traceback
in most alignment algorithms and heuristics usually scale
linearly or quadratically with the lengths of the sequences.
Consequently, it is nearly impossible to store the traceback
state for performing long alignments within the limited on-
chip memory available on hardware accelerators. Additionally,
even though off-chip memory has a higher capacity, it does
not offer enough bandwidth to achieve significant acceleration,
creating a further hurdle. To circumvent this issue, previous
accelerators have employed one of the following four strategies.
Firstly, some accelerators only deal with alignment scoring,
omitting the traceback functionality, which severely limits their
applicability, such as for pre-alignment filtering. Examples of
such accelerators include LOGAN [77] and BioSEAL [105].
Secondly, several accelerators have restricted the length of
alignments they handle. Accelerators such as GSWABE [78],
GenAx [83], SeedEx [84], and ASAP [85] serve as examples

of this category. Thirdly, some accelerators, such as FPGA-SW
[87], use off-chip memory for storing traceback pointers in case
of long alignments, which limits their achievable throughput.
Finally, some recent accelerators have applied a heuristic tiling
approach for handling alignments of arbitrary lengths, first
proposed in the GACT algorithm of the Darwin co-processor
[7] and was later adapted in other accelerators, such as GACT-
X [8], GenASM [9], Scrooge [10], SeGraM [22], ABSW [23],
Darwin-GPU [24] and RAPIDx [25].

One downside of the previous alignment tiling methods
has been that they cannot guarantee optimality, which could
degrade the quality of alignments in some cases and make it
unattainable to preserve parity with non-tiling software methods.
For example, authors in [115] tried to accelerate minimap2
on FPGAs by adopting the GACT-X algorithm but observed
equivalent alignment in less than 95% of cases. TALCO is a
novel tiling approach that can guarantee optimal alignments
under banding constraints and be applied orthogonally to
each of the aforementioned categories of accelerators (CPU,
GPU, FPGA, and ASIC). This development could broaden
the applicability and lead to wider adoption of hardware
accelerators in the bioinformatics community.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented TALCO, a generalizable tiling
strategy for banded sequence alignment algorithms. Unlike
previous greedy tiling strategies, which cannot guarantee the
quality of results and impose a barrier to the wider adoption
of hardware accelerators in real-world applications, TALCO
ensures that the alignment quality is not compromised due to
tiling. This allows arbitrarily long alignments to be accelerated
in hardware accelerators that have a fixed amount of on-chip
memory to store the traceback state and achieve orders of
magnitude gain in throughput and energy efficiency. TALCO
leverages the convergence of traceback paths, which, as we
demonstrate, appears to be a general property in both classical
and non-classical algorithms for sequence alignment. When
implemented in software, tiling with TALCO reduces the peak
memory footprint of alignment algorithms by 1-2 orders of
magnitude for long reads. We expect TALCO to be beneficial
to a broad range of alignment algorithms and accelerators.
In the future, we plan to apply TALCO to accelerate and
improve the memory footprint of algorithms spanning a wide
variety of bioinformatic applications, such as multiple-sequence
alignment, sequence-to-graph alignment, and base-calling.

IX. ACKNOWLEDGMENTS

We thank Saeed Maleki for the helpful discussions. Research
reported in this publication was supported by an Amazon
Research Award (Fall 2022 CFP) and funding from the Hellman
Fellowship and the U.S. Centers for Disease Control and
Prevention through the Office of Advanced Molecular Detection
(contract 75D30123C17463).

REFERENCES

[1] Zhenyu Li, Yanxiang Chen, Desheng Mu, Jianying Yuan, Yujian Shi,
Hao Zhang, Jun Gan, Nan Li, Xuesong Hu, Binghang Liu, Bicheng
Yang, and Wei Fan. Comparison of the two major classes of assembly
algorithms: overlap–layout–consensus and de-bruijn-graph. Briefings in
functional genomics, 11(1):25–37, 2012.

[2] Margaret A Hamburg and Francis S Collins. The path to personalized
medicine. New England Journal of Medicine, 363(4):301–304, 2010.

[3] Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim,
Saugata Ghose, Can Alkan, and Onur Mutlu. Accelerating genome
analysis: A primer on an ongoing journey. IEEE Micro, 40(5):65–75,
2020.

[4] M Stratton. A comprehensive catalogue of somatic mutations from a
human cancer genome. 2010.

[5] Heng Li. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics, 34(18):3094–3100, 05 2018.

[6] Sergey Koren, Brian P Walenz, Konstantin Berlin, Jason R Miller,
Nicholas H Bergman, and Adam M Phillippy. Canu: scalable and
accurate long-read assembly via adaptive k-mer weighting and repeat
separation. Genome research, 27(5):722–736, 2017.

[7] Yatish Turakhia, Gill Bejerano, and William J Dally. Darwin: a genomics
coprocessor. IEEE Micro, 39(3):29–37, 2019.

[8] Yatish Turakhia, Sneha D. Goenka, Gill Bejerano, and WIlliam J. Dally.
Darwin-WGA: A co-processor provides increased sensitivity in whole
genome alignments with high speedup. In 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
359–372, 2019.

[9] Damla Senol Cali, Gurpreet S. Kalsi, Zülal Bingöl, Can Firtina, Lavanya
Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed
Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Norion, Allison
Scibisz, Sreenivas Subramoneyon, Can Alkan, Saugata Ghose, and Onur
Mutlu. GenASM: A high-performance, low-power approximate string
matching acceleration framework for genome sequence analysis. In 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 951–966, 2020.

[10] Joël Lindegger, Damla Senol Cali, Mohammed Alser, Juan Gómez-
Luna, Nika Mansouri Ghiasi, and Onur Mutlu. Scrooge: A Fast and
Memory-Frugal Genomic Sequence Aligner for CPUs, GPUs, and
ASICs. Bioinformatics, 03 2023. btad151.

[11] Yoshitaka Sakamoto, Sarun Sereewattanawoot, and Ayako Suzuki. A
new era of long-read sequencing for cancer genomics. Journal of human
genetics, 65(1):3–10, 2020.

[12] David Gordon, John Huddleston, Mark JP Chaisson, Christopher M
Hill, Zev N Kronenberg, Katherine M Munson, Maika Malig, Archana
Raja, Ian Fiddes, LaDeana W Hillier, Christopher Dunn, Carl Baker,
Joel Armstrong, Mark Diekhans, Benedict Paten, Jay Shendure,
Richard K. Wilson, David Haussler, Chen-Shan Chin, and Evan E.
Eichler. Long-read sequence assembly of the gorilla genome. Science,
352(6281):aae0344, 2016.

[13] Eric E Schadt, Steve Turner, and Andrew Kasarskis. A window into
third-generation sequencing. Human molecular genetics, 19(R2):R227–
R240, 2010.

[14] Vivien Marx. Method of the year: long-read sequencing. Nature
Methods, 20(1):6–11, Jan 2023.

[15] John E Gorzynski, Sneha D Goenka, Kishwar Shafin, Tanner D Jensen,
Dianna G Fisk, Megan E Grove, Elizabeth Spiteri, Trevor Pesout, Jean
Monlong, and Gunjan Baid. Ultrarapid nanopore genome sequencing in
a critical care setting. New England Journal of Medicine, 386(7):700–
702, 2022.

[16] Doruk Beyter, Helga Ingimundardottir, Asmundur Oddsson, Hannes P
Eggertsson, Eythor Bjornsson, Hakon Jonsson, Bjarni A Atlason,
Snaedis Kristmundsdottir, Svenja Mehringer, Marteinn T Hardarson,
Sigurjon A. Gudjonsson, Droplaug N. Magnusdottir, Aslaug Jonasdottir,
Adalbjorg Jonasdottir, Ragnar P. Kristjansson, Sverrir T. Sverrisson,
Guillaume Holley, Gunnar Palsson, Olafur A. Stefansson, Gudmundur
Eyjolfsson, Isleifur Olafsson, Olof Sigurdardottir, Bjarni Torfason,
Gisli Masson, Agnar Helgason, Unnur Thorsteinsdottir, Hilma Holm,
Daniel F. Gudbjartsson, Patrick Sulem, Olafur T. Magnusson, Bjarni V.
Halldorsson, and Kari. Stefansson. Long-read sequencing of 3,622
icelanders provides insight into the role of structural variants in human
diseases and other traits. Nature Genetics, 53(6):779–786, 2021.

[17] Cory Y McLean, Philip L Reno, Alex A Pollen, Abraham I Bassan,
Terence D Capellini, Catherine Guenther, Vahan B Indjeian, Xinhong

Lim, Douglas B Menke, Bruce T Schaar, Aaron M. Wenger, Gill
Bejerano, and David M. Kingsley. Human-specific loss of regulatory
DNA and the evolution of human-specific traits. Nature, 471(7337):216–
219, 2011.

[18] Chimpanzee Sequencing and Analysis Consortium Waterson Robert H.
waterston@ gs. washington. edu Lander Eric S. lander@ broad. mit.
edu Wilson Richard K. rwilson@ watson. wustl. edu. Initial sequence
of the chimpanzee genome and comparison with the human genome.
Nature, 437(7055):69–87, 2005.

[19] Temple F Smith and Michael S Waterman. Identification of common
molecular subsequences. Journal of molecular biology, 147(1):195–197,
1981.

[20] Saul B. Needleman and Christian D. Wunsch. A general method
applicable to the search for similarities in the amino acid sequence of
two proteins. Journal of Molecular Biology, 48(3):443–453, 1970.

[21] Tony Robinson, Jim Harkin, and Priyank Shukla. Hardware acceleration
of genomics data analysis: challenges and opportunities. Bioinformatics,
37(13):1785–1795, 2021.

[22] Damla Senol Cali, Konstantinos Kanellopoulos, Joël Lindegger, Zülal
Bingöl, Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu
Cavlak, Jeremie Kim, Nika Mansouri Ghiasi, Gagandeep Singh, Juan
Gómez-Luna, Nour Almadhoun Alserr, Mohammed Alser, Sreenivas
Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu. Segram:
A universal hardware accelerator for genomic sequence-to-graph and
sequence-to-sequence mapping. In Proceedings of the 49th Annual
International Symposium on Computer Architecture, ISCA ’22, page
638–655, New York, NY, USA, 2022. Association for Computing
Machinery.

[23] Yi-Lun Liao, Yu-Cheng Li, Nae-Chyun Chen, and Yi-Chang Lu.
Adaptively banded smith-waterman algorithm for long reads and its
hardware accelerator. In 2018 IEEE 29th International Conference
on Application-specific Systems, Architectures and Processors (ASAP),
pages 1–9, 2018.

[24] Nauman Ahmed, Tong Dong Qiu, Koen Bertels, and Zaid Al-Ars. GPU
acceleration of darwin read overlapper for de novo assembly of long
DNA reads. BMC bioinformatics, 21(13):1–17, 2020.

[25] Weihong Xu, Saransh Gupta, Niema Moshiri, and Tajana Rosing.
RAPIDx: High-performance ReRAM processing in-memory accelerator
for sequence alignment. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2023.

[26] Geraldine A Van der Auwera, Mauricio O Carneiro, Christopher Hartl,
Ryan Poplin, Guillermo Del Angel, Ami Levy-Moonshine, Tadeusz
Jordan, Khalid Shakir, David Roazen, Joel Thibault, Eric Banks, Kiran V.
Garimella, David Altshuler, Stacey Gabriel, and Mark A. DePristo. From
FastQ data to high-confidence variant calls: the genome analysis toolkit
best practices pipeline. Current protocols in bioinformatics, 43(1):11–10,
2013.

[27] Arun Subramaniyan, Yufeng Gu, Timothy Dunn, Somnath Paul,
Md Vasimuddin, Sanchit Misra, David Blaauw, Satish Narayanasamy,
and Reetuparna Das. Genomicsbench: A benchmark suite for genomics.
In 2021 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 1–12, 2021.

[28] Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim,
Saugata Ghose, Can Alkan, and Onur Mutlu. Accelerating genome
analysis: A primer on an ongoing journey. IEEE Micro, 40(5):65–75,
2020.

[29] Mohammed Alser, Hasan Hassan, Hongyi Xin, Oğuz Ergin, Onur
Mutlu, and Can Alkan. GateKeeper: a new hardware architecture for
accelerating pre-alignment in DNA short read mapping. Bioinformatics,
33(21):3355–3363, 05 2017.

[30] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, AFIPS ’67 (Spring), page
483–485, New York, NY, USA, 1967. Association for Computing
Machinery.

[31] Martin C Frith, Michiaki Hamada, and Paul Horton. Parameters for
accurate genome alignment. BMC bioinformatics, 11:1–14, 2010.

[32] Zheng Zhang, Piotr Berman, Thomas Wiehe, and Webb Miller. Post-
processing long pairwise alignments . Bioinformatics, 15(12):1012–1019,
12 1999.

[33] Robert S Harris. Improved pairwise alignment of genomic DNA. The
Pennsylvania State University, 2007.

[34] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers,

and David J Lipman. Basic local alignment search tool. Journal of
molecular biology, 215(3):403–410, 1990.

[35] Vladimir I Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, volume 10, pages
707–710. Soviet Union, 1966.

[36] Osamu Gotoh. An improved algorithm for matching biological
sequences. Journal of Molecular Biology, 162(3):705–708, 1982.

[37] Eugene W Myers. An o (nd) difference algorithm and its variations.
Algorithmica, 1(1-4):251–266, 1986.

[38] Santiago Marco-Sola, Juan Carlos Moure, Miquel Moreto, and Antonio
Espinosa. Fast gap-affine pairwise alignment using the wavefront
algorithm. Bioinformatics, 37(4):456–463, 09 2020.

[39] Jordan M. Eizenga and Benedict Paten. Improving the time and space
complexity of the wfa algorithm and generalizing its scoring. bioRxiv,
2022.

[40] Santiago Marco-Sola, Jordan M Eizenga, Andrea Guarracino, Benedict
Paten, Erik Garrison, and Miquel Moreto. Optimal gap-affine alignment
in O(s) space. Bioinformatics, 39(2):btad074, 02 2023.

[41] Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb Miller. A
greedy algorithm for aligning dna sequences. Journal of Computational
biology, 7(1-2):203–214, 2000.

[42] Saeed Maleki, Madanlal Musuvathi, and Todd Mytkowicz. Parallelizing
dynamic programming through rank convergence. ACM SIGPLAN
Notices, 49(8):219–232, 2014.

[43] Abbas Haghi, Santiago Marco-Sola, Lluc Alvarez, Dionysios Dia-
mantopoulos, Christoph Hagleitner, and Miquel Moreto. An fpga
accelerator of the wavefront algorithm for genomics pairwise alignment.
In 2021 31st International Conference on Field-Programmable Logic
and Applications (FPL), pages 151–159, 2021.

[44] Yukiteru Ono, Kiyoshi Asai, and Michiaki Hamada. Pbsim2: a simulator
for long-read sequencers with a novel generative model of quality scores.
Bioinformatics, 37(5):589–595, 2021.

[45] Anthony Rhoads and Kin Fai Au. Pacbio sequencing and its applications.
Genomics, Proteomics Bioinformatics, 13(5):278–289, 2015. SI:
Metagenomics of Marine Environments.

[46] Ivan Sović, Mile Šikić, Andreas Wilm, Shannon Nicole Fenlon, Swaine
Chen, and Niranjan Nagarajan. Fast and sensitive mapping of nanopore
sequencing reads with GraphMap. Nature communications, 7(1):11307,
2016.

[47] Hajime Suzuki and Masahiro Kasahara. Introducing difference recur-
rence relations for faster semi-global alignment of long sequences. BMC
bioinformatics, 19(1):33–47, 2018.

[48] Martin Šošić and Mile Šikić. Edlib: a c/c++ library for fast, exact
sequence alignment using edit distance. Bioinformatics, 33(9):1394–
1395, 2017.

[49] Rohit Chandra, Leo Dagum, Ramesh Menon, David Kohr, Dror Maydan,
and Jeff McDonald. Parallel programming in OpenMP. Morgan
kaufmann, 2001.

[50] Philipp Wendler and Dirk Beyer. sosy-lab/benchexec: Release 3.16,
February 2023.

[51] Nauman Ahmed, Tong Dong Qiu, Koen Bertels, and Zaid Al-Ars. Gpu
acceleration of darwin read overlapper for de novo assembly of long
dna reads. BMC bioinformatics, 21(13):1–17, 2020.

[52] NVIDIA. Nvidia rtx a6000 datasheet, 2020.
[53] NVIDIA. Nsight compute metrics guide, 2020.
[54] Tutu Ajayi, Vidya A. Chhabria, Mateus Fogaça, Soheil Hashemi,

Abdelrahman Hosny, Andrew B. Kahng, Minsoo Kim, Jeongsup Lee,
Uday Mallappa, Marina Neseem, Geraldo Pradipta, Sherief Reda, Mehdi
Saligane, Sachin S. Sapatnekar, Carl Sechen, Mohamed Shalan, William
Swartz, Lutong Wang, Zhehong Wang, Mingyu Woo, and Bangqi
Xu. Toward an open-source digital flow: First learnings from the
openroad project. In Proceedings of the 56th Annual Design Automation
Conference 2019, DAC ’19, New York, NY, USA, 2019. Association
for Computing Machinery.

[55] Matthew R. Guthaus, James E. Stine, Samira Ataei, Brian Chen, Bin Wu,
and Mehedi Sarwar. Openram: An open-source memory compiler. In
2016 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1–6, 2016.

[56] James E. Stine, Ivan Castellanos, Michael Wood, Jeff Henson, Fred Love,
W. Rhett Davis, Paul D. Franzon, Michael Bucher, Sunil Basavarajaiah,
Julie Oh, and Ravi Jenkal. Freepdk: An open-source variation-aware
design kit. In 2007 IEEE International Conference on Microelectronic
Systems Education (MSE’07), pages 173–174, 2007.

[57] Yonghui Li Sven Goossens Matthias Jung Omar Naji Benny Akesson
Norbert Wehn Karthik Chandrasekar, Christian Weis and Kees Goossens.
Drampower: Open-source dram power energy estimation tool.

[58] Ultrascale architecture and product data sheet: Overview, Nov 2022.
[59] Amazon Web Service. Overview of aws ec2 fpga development kit.

https://github.com/aws/aws-fpga.
[60] Esko Ukkonen. Algorithms for approximate string matching. Informa-

tion and Control, 64(1):100–118, 1985. International Conference on
Foundations of Computation Theory.

[61] Gene Myers. A fast bit-vector algorithm for approximate string matching
based on dynamic programming. J. ACM, 46(3):395–415, may 1999.

[62] Ragnar Groot Koerkamp and Pesho Ivanov. Exact global alignment
using a* with seed heuristic and match pruning. bioRxiv, page 92,
2022.

[63] Pesho Ivanov, Benjamin Bichsel, Harun Mustafa, André Kahles, Gunnar
Rätsch, and Martin Vechev. AStarix: Fast and optimal sequence-to-graph
alignment. In Russell Schwartz, editor, Research in Computational
Molecular Biology, pages 104–119, Cham, 2020. Springer International
Publishing.

[64] Ricardo Baeza-Yates and Gaston H. Gonnet. A new approach to text
searching. Commun. ACM, 35(10):74–82, oct 1992.

[65] Sun Wu and Udi Manber. Fast text searching: Allowing errors. Commun.
ACM, 35(10):83–91, oct 1992.

[66] Fabian Sievers, Andreas Wilm, David Dineen, Toby J Gibson, Kevin
Karplus, Weizhong Li, Rodrigo Lopez, Hamish McWilliam, Michael
Remmert, Johannes Söding, Julie D Thompson, and Desmond G Higgins.
Fast, scalable generation of high-quality protein multiple sequence
alignments using Clustal Omega. Molecular Systems Biology, 7(1):539,
2011.

[67] Robert C Edgar. MUSCLE: a multiple sequence alignment method with
reduced time and space complexity. BMC bioinformatics, 5(1):1–19,
2004.

[68] S R Eddy. Profile hidden Markov models. Bioinformatics, 14(9):755–
763, 01 1998.

[69] David Sankoff. Minimal mutation trees of sequences. SIAM Journal
on Applied Mathematics, 28(1):35–42, 1975.

[70] Jared T Simpson, Rachael E Workman, PC Zuzarte, Matei David,
LJ Dursi, and Winston Timp. Detecting dna cytosine methylation using
nanopore sequencing. Nature methods, 14(4):407–410, 2017.

[71] Rasmus Nielsen, Thorfinn Korneliussen, Anders Albrechtsen, Yingrui
Li, and Jun Wang. Snp calling, genotype calling, and sample allele
frequency estimation from new-generation sequencing data. 2012.

[72] Tatsuya Akutsu. Dynamic programming algorithms for rna secondary
structure prediction with pseudoknots. Discrete Applied Mathematics,
104(1-3):45–62, 2000.

[73] Nicholas Noll, Marco Molari, Liam P Shaw, and Richard A Neher.
Pangraph: scalable bacterial pan-genome graph construction. bioRxiv,
pages 2022–02, 2022.

[74] Glenn Hickey, David Heller, Jean Monlong, Jonas A Sibbesen, Jouni
Sirén, Jordan Eizenga, Eric T Dawson, Erik Garrison, Adam M Novak,
and Benedict Paten. Genotyping structural variants in pangenome graphs
using the vg toolkit. Genome biology, 21:1–17, 2020.

[75] Heng Li, Xiaowen Feng, and Chong Chu. The design and construction
of reference pangenome graphs with minigraph. Genome biology,
21:1–19, 2020.

[76] Yan Gao, Yongzhuang Liu, Yanmei Ma, Bo Liu, Yadong Wang, and
Yi Xing. abPOA: an SIMD-based C library for fast partial order
alignment using adaptive band. Bioinformatics, 37(15):2209–2211,
2021.

[77] Alberto Zeni, Giulia Guidi, Marquita Ellis, Nan Ding, Marco D.
Santambrogio, Steven Hofmeyr, Aydın Buluç, Leonid Oliker, and
Katherine Yelick. LOGAN: High-performance GPU-Based X-Drop long-
read alignment. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 462–471, 2020.

[78] Yongchao Liu and Bertil Schmidt. GSWABE: Faster gpu-accelerated
sequence alignment with optimal alignment retrieval for short dna
sequences. Concurr. Comput.: Pract. Exper., 27(4):958–972, mar 2015.

[79] Nauman Ahmed, Jonathan Lévy, Shanshan Ren, Hamid Mushtaq, Koen
Bertels, and Zaid Al-Ars. Gasal2: a gpu accelerated sequence alignment
library for high-throughput ngs data. BMC bioinformatics, 20:1–20,
2019.

[80] Sneha D. Goenka, Yatish Turakhia, Benedict Paten, and Mark Horowitz.
Segalign: A scalable gpu-based whole genome aligner. In SC20:

https://github.com/aws/aws-fpga

International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–13, 2020.

[81] Jacopo Pantaleoni and Nuno Subtil. Nvbio.
[82] Mohammed Alser, Taha Shahroodi, Juan Gómez-Luna, Can Alkan,

and Onur Mutlu. SneakySnake: a fast and accurate universal genome
pre-alignment filter for CPUs, GPUs and FPGAs. Bioinformatics, 36(22-
23):5282–5290, 12 2020.

[83] Daichi Fujiki, Arun Subramaniyan, Tianjun Zhang, Yu Zeng, Reetuparna
Das, David Blaauw, and Satish Narayanasamy. GenAx: A genome
sequencing accelerator. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pages 69–82, 2018.

[84] Daichi Fujiki, Shunhao Wu, Nathan Ozog, Kush Goliya, David
Blaauw, Satish Narayanasamy, and Reetuparna Das. SeedEx: A
genome sequencing accelerator for optimal alignments in subminimal
space. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 937–950, 2020.

[85] Subho Sankar Banerjee, Mohamed El-Hadedy, Jong Bin Lim, Zbig-
niew T. Kalbarczyk, Deming Chen, Steven S. Lumetta, and Ravis-
hankar K. Iyer. ASAP: Accelerated short-read alignment on pro-
grammable hardware. IEEE Transactions on Computers, 68(3):331–346,
2019.

[86] Arun Subramaniyan, Jack Wadden, Kush Goliya, Nathan Ozog, Xiao
Wu, Satish Narayanasamy, David Blaauw, and Reetuparna Das. Accel-
erated seeding for genome sequence alignment with enumerated radix
trees. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA), pages 388–401, 2021.

[87] Xia Fei, Zou Dan, Lu Lina, Man Xin, and Zhang Chunlei. FPGASW:
accelerating large-scale Smith–Waterman sequence alignment applica-
tion with backtracking on FPGA linear systolic array. Interdisciplinary
Sciences: Computational Life Sciences, 10:176–188, 2018.

[88] Khaled Benkrid, Ying Liu, and AbdSamad Benkrid. A highly
parameterized and efficient FPGA-Based skeleton for pairwise biological
sequence alignment. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 17(4):561–570, 2009.

[89] Konstantina Koliogeorgi, Nils Voss, Sotiria Fytraki, Sotirios Xydis,
Georgi Gaydadjiev, and Dimitrios Soudris. Dataflow acceleration of
Smith-Waterman with traceback for high throughput next generation
sequencing. In 2019 29th International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 74–80, 2019.

[90] Jeff Allred, Jack Coyne, William Lynch, Vincent Natoli, Joseph Grecco,
and Joel Morrissette. Smith-Waterman implementation on a FSB-FPGA
module using the intel accelerator abstraction layer. In 2009 IEEE
International Symposium on Parallel Distributed Processing, pages
1–4, 2009.

[91] Xianyang Jiang, Xinchun Liu, Lin Xu, Peiheng Zhang, and Ninghui
Sun. A reconfigurable accelerator for Smith–Waterman algorithm. IEEE
Transactions on Circuits and Systems II: Express Briefs, 54(12):1077–
1081, 2007.

[92] J. M. Marmolejo-Tejada, V. Trujillo-Olaya, C. P. Renterı́a-Mejı́a, and
J. Velasco-Medina. Hardware implementation of the Smith-Waterman
algorithm using a systolic architecture. In 2014 IEEE 5th Latin American
Symposium on Circuits and Systems, pages 1–4, 2014.

[93] Ho-Cheung Ng, Shuanglong Liu, Izaak Coleman, Ringo S.W. Chu,
Man-Chung Yue, and Wayne Luk. Acceleration of short read alignment
with runtime reconfiguration. In 2020 International Conference on
Field-Programmable Technology (ICFPT), pages 256–262, 2020.

[94] Yu-Ting Chen, Jason Cong, Jie Lei, and Peng Wei. A novel high-
throughput acceleration engine for read alignment. In 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom
Computing Machines, pages 199–202, 2015.

[95] Lorenzo Di Tucci, Kenneth O’Brien, Michaela Blott, and Marco D.
Santambrogio. Architectural optimizations for high performance and
energy efficient Smith-Waterman implementation on FPGAs using
OpenCL. In Design, Automation Test in Europe Conference Exhibition
(DATE), 2017, pages 716–721, 2017.

[96] D. S. Nurdin, M. N. Isa, and S. H. Goh. DNA sequence alignment:
A review of hardware accelerators and a new core architecture. In
2016 3rd International Conference on Electronic Design (ICED), pages
264–268, 2016.

[97] K. Puttegowda, W. Worek, N. Pappas, A. Dandapani, P. Athanas, and
A. Dickerman. A run-time reconfigurable system for gene-sequence
searching. In 16th International Conference on VLSI Design, 2003.
Proceedings., pages 561–566, 2003.

[98] Jing-Ping Wu, Yi-Chien Lin, Ying-Wei Wu, Shih-Wei Hsieh, Ching-
Hsuan Tai, and Yi-Chang Lu. A memory-efficient accelerator for dna
sequence alignment with two-piece affine gap tracebacks. In 2021 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1–4,
2021.

[99] Ernst Joachim Houtgast, Vlad-Mihai Sima, Koen Bertels, and Zaid
Al-Ars. An FPGA-based systolic array to accelerate the BWA-MEM
genomic mapping algorithm. In 2015 International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), pages 221–227, 2015.

[100] Tae Jun Ham, David Bruns-Smith, Brendan Sweeney, Yejin Lee,
Seong Hoon Seo, U Gyeong Song, Young H Oh, Krste Asanovic,
Jae W Lee, and Lisa Wu Wills. Genesis: A hardware acceleration
framework for genomic data analysis. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pages 254–
267. IEEE, 2020.

[101] Robert Hanhan, Esteban Garzón, Zuher Jahshan, Adam Teman, Marco
Lanuzza, and Leonid Yavits. Edam: Edit distance tolerant approximate
matching content addressable memory. In Proceedings of the 49th
Annual International Symposium on Computer Architecture, ISCA ’22,
page 495–507, New York, NY, USA, 2022. Association for Computing
Machinery.

[102] Anirban Nag, C. N. Ramachandra, Rajeev Balasubramonian, Ryan
Stutsman, Edouard Giacomin, Hari Kambalasubramanyam, and Pierre-
Emmanuel Gaillardon. GenCache: Leveraging in-cache operators for
efficient sequence alignment. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO ’52,
page 334–346, New York, NY, USA, 2019. Association for Computing
Machinery.

[103] H. Mao, M. Alser, M. Sadrosadati, C. Firtina, A. Baranwal, D. Cali,
A. Manglik, N. Alserr, and O. Mutlu. GenPIP: In-memory acceleration
of genome analysis via tight integration of basecalling and read mapping.
In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 710–726, Los Alamitos, CA, USA, oct 2022. IEEE
Computer Society.

[104] Wenqin Huangfu, Shuangchen Li, Xing Hu, and Yuan Xie. RADAR:
A 3D-ReRAM based dna alignment accelerator architecture. In
Proceedings of the 55th Annual Design Automation Conference, DAC
’18, New York, NY, USA, 2018. Association for Computing Machinery.

[105] Roman Kaplan, Leonid Yavits, and Ran Ginosasr. Bioseal: In-memory
biological sequence alignment accelerator for large-scale genomic data.
In Proceedings of the 13th ACM International Systems and Storage
Conference, SYSTOR ’20, page 36–48, New York, NY, USA, 2020.
Association for Computing Machinery.

[106] Saransh Gupta, Mohsen Imani, Behnam Khaleghi, Venkatesh Kumar,
and Tajana Rosing. RAPID: A ReRAM processing in-memory archi-
tecture for DNA sequence alignment. In 2019 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), pages
1–6, 2019.

[107] Farzaneh Zokaee, Hamid R. Zarandi, and Lei Jiang. AligneR: A process-
in-memory architecture for short read alignment in ReRAMs. IEEE
Computer Architecture Letters, 17(2):237–240, 2018.

[108] Roman Kaplan, Leonid Yavits, Ran Ginosar, and Uri Weiser. A resistive
CAM processing-in-storage architecture for DNA sequence alignment.
IEEE Micro, 37(4):20–28, 2017.

[109] Wenqin Huangfu, Shuangchen Li, Xing Hu, and Yuan Xie. RADAR:
A 3D-ReRAM based dna alignment accelerator architecture. In 2018
55th ACM/ESDA/IEEE Design Automation Conference (DAC), pages
1–6, 2018.

[110] Zamshed I. Chowdhury, Masoud Zabihi, S. Karen Khatamifard,
Zhengyang Zhao, Salonik Resch, Meisam Razaviyayn, Jian-Ping Wang,
Sachin S. Sapatnekar, and Ulya R. Karpuzcu. A DNA read alignment
accelerator based on computational RAM. IEEE Journal on Exploratory
Solid-State Computational Devices and Circuits, 6(1):80–88, 2020.

[111] Zhuowen Zou, Hanning Chen, Prathyush Poduval, Yeseong Kim,
Mahdi Imani, Elaheh Sadredini, Rosario Cammarota, and Mohsen
Imani. Biohd: An efficient genome sequence search platform using
hyperdimensional memorization. In Proceedings of the 49th Annual
International Symposium on Computer Architecture, ISCA ’22, page
656–669, New York, NY, USA, 2022. Association for Computing
Machinery.

[112] Pieter Van Rooyen, Robert J McMillen, and Michael Ruehle. Bioinfor-
matics systems, apparatuses, and methods executed on an integrated
circuit processing platform, June 13 2017. US Patent 9,679,104.

[113] Anne C Elster and Tor A Haugdahl. Nvidia hopper gpu and grace cpu
highlights. Computing in Science & Engineering, 24(2):95–100, 2022.

[114] William J Dally, Yatish Turakhia, and Song Han. Domain-specific
hardware accelerators. Communications of the ACM, 63(7):48–57,
2020.

[115] Carolina Teng, Renan Weege Achjian, Jiang Chau Wang, and Fer-
nando Josepetti Fonseca. Adapting the GACT-X aligner to accelerate
Minimap2 in an FPGA cloud instance. Applied Sciences, 13(7), 2023.

ARTIFACT APPENDIX

A. Abstract

Here we briefly describe how to reproduce the main results
of this paper. The instructions cover: 1) the installation of
dependencies, 2) the process for downloading the dataset, 3)
steps for building TALCO-XDrop, TALCO-WFAA, and all
baseline components, and 4) methods for conducting software
and ASIC analysis. The source code and instructions can be ac-
cessed from GitHub (https://github.com/TurakhiaLab/TALCO)
or the Zenodo archive (https://zenodo.org/records/10306077).

B. Artifact check-list (meta-information)
• Algorithm: Sequence Alignment Algorithms: Needleman-

Wunsch, X-Drop, WFA-Adapt, Edlib, and GACT-X
• Program: Docker, C++/C
• Compilation: g++-11.4, gcc-11.4
• Dataset: Simulated reads from PBSIM2, resembling error

profiles of Pacific Biosciences (PacBio) and Oxford Nanopore
Technology (ONT)

• Hardware: Intel CPU and NVIDIA GPU
• Metrics: Memory Usage, Alignment Throughput/Watt, and

Alignment Throughput
• Output: Experiments produce outputs in the console or log

files.
• Experiments: a) Memory Usage for TALCO-XDrop, TALCO-

WFAA (software), and CPU baselines, b) ASIC analysis for
TALCO-XDrop and TALCO-WFAA, c) CPU/GPU/ASIC base-
lines for throughput analysis

• Memory space requirement: 20GB
• Disk space requirement: 50GB
• Time needed to complete the experiments: 10 hours
• Publicly available: Yes
• Code licenses: MIT
• Data licenses: MIT
• Archive DOI: 10.5281/zenodo.10306077

C. Description

1) How to access: The codebase can be accessed from
GitHub (https://github.com/TurakhiaLab/TALCO) or the
Zenodo archive (https://zenodo.org/records/10306077).

2) Hardware Dependencies:
• Intel CPU and NVIDIA GPU
• 20GB memory and 50GB storage

3) Software Dependencies:
• Linux OS
• gcc >= 10.5.0
• cmake >= 3.16.3
• CUDA >= 10.0
• Python >= 3.8.0
• Python3-pip

D. Installation

Use the following commands to clone the TALCO repository,
install the necessary tools, download the dataset, and build
TALCO-XDrop, TALCO-WFAA, and software baselines.

$Host: git clone --recursive
https://github.com/TurakhiaLab/TALCO.git

$Host: cd TALCO/software/scripts
$Host: sudo ./install_dependencies.sh
$Host: source setup_dataset.sh
$Host: source build_baseline.sh
$Host: source build_TALCO.sh

E. Experiment workflow

The results presented in this paper can be reproduced using
the following instructions:

1) Generate the memory footprint of single-threaded ex-
ecution of TALCO-XDrop (software), TALCO-WFAA
(software), and baselines (Libgaba, WFA-Adapt, and
BiWFA) using the following command.

$Host: ./analysis.sh mem

2) Alignment throughput of all software baselines, executed
on 32 CPU threads, can be generated using the following
command.

$Host: ./analysis.sh thp

3) Alignment throughput/watt of all the software baselines,
executed on 32 CPU threads, can be generated using
the following command. Please note that this analysis
cannot be performed on AWS/VM/Docker as Benchexec
does not work with them and is also described at
https://github.com/TurakhiaLab/TALCO/tree/main/software.

$Host: ./analysis.sh thp/w

ASIC Analysis
1) We provide a pre-built docker image

(swalia14/talco:latest) with all necessary tools
installed in it for ASIC evaluation. Use the following
command to download and run the docker image.

$Host: docker run -it
swalia14/talco:latest

2) ASIC analysis of our designs (TALCO-XDrop and
TALCO-WFAA) is performed using the following com-
mands (inside the docker container):

$Docker: cd /TALCO/hardware/scripts
Area, Power, and Critical path delay of

designs
$Docker: source ASIC_analysis.sh

[XDrop/WFAA]
SRAM area and power
$Docker: source SRAM_analysis.sh
DRAM power and cycle count

https://github.com/TurakhiaLab/TALCO
https://zenodo.org/records/10306077
https://github.com/TurakhiaLab/TALCO
https://zenodo.org/records/10306077
https://github.com/TurakhiaLab/TALCO/tree/main/software

$Docker: source DRAM_analysis.sh

F. Evaluation and Expected results

• Memory Footprint: The goal of this experiment is to
demonstrate that the TALCO tiling strategy improves the
memory footprint of software aligners without affecting
the alignment results. To quantify the benefits, Software
Analysis Step 1 reproduces the results in Figure 10 and 11.

• ASIC Analysis: We perform ASIC analysis of our designs
using OpenROAD with OpenRAM, and use DRAMPower
for DRAM analysis. Table II is reproduced in ASIC
Analysis Step 2.

• Throughput: This experiment compares the alignment
throughput of TALCO-XDrop and TALCO-WFAA ASIC
implementation with all baselines. Figure 16 is reproduced
in Software Analysis Step 2 and ASIC Analysis Step 2.

• Throughput/Watt: This experiment compares the align-
ment throughput per watt of TALCO-XDrop (TALCO-
WFAA) with the Libgaba (WFA-Adapt) algorithm exe-
cuting on 32 CPU threads used as the baseline. ASIC
Analysis Step 2 and Software Analysis Step 3 reproduce
the results in Figure 13 and 14.

G. Notes

1) We recommend using the docker image we provided to
reproduce the ASIC results presented in the paper.

2) We performed the CPU and GPU analysis on a 64-core
Intel Xeon Silver 4216 processor and NVIDIA RTX
A6000 GPU, respectively, and the results may vary with
other processors.

H. Methodology

Submission, reviewing, and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-and-badging-current
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

	Introduction
	Background
	TALCO Algorithm Description
	TALCO Accelerator Design
	Experimental Methodology
	Results and Discussion
	Related Work
	Conclusion and Future Work
	Acknowledgments
	References
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	Installation
	Experiment workflow
	Evaluation and Expected results
	Notes
	Methodology

